English
Language : 

LTC3731 Datasheet, PDF (20/32 Pages) Linear Technology – 3-Phase, 600kHz, Synchronous Buck Switching Regulator Controller
LTC3731
APPLICATIO S I FOR ATIO
EXTERNAL
OSC
PHASE
DETECTOR/
OSCILLATOR
OSC
RLP
2.4V
10k
CLP
PLLFLTR
PLLIN
DIGITAL
PHASE/
FREQUENCY
50k
DETECTOR
3731 F09
Figure 9. Phase-Locked Loop Block Diagram
PLLFLTR pin is adjusted until the phase and frequency of
the external and internal oscillators are identical. At this
stable operating point, the phase comparator output is
open and the filter capacitor CLP holds the voltage. The IC
PLLIN pin must be driven from a low impedance source
such as a logic gate located close to the pin. When using
multiple ICs for a phase-locked system, the PLLFLTR pin
of the master oscillator should be biased at a voltage that
will guarantee the slave oscillator(s) ability to lock onto the
master’s frequency. A voltage of 1.7V or below applied to
the master oscillator’s PLLFLTR pin is recommended in
order to meet this requirement. The resultant operating
frequency will be approximately 550kHz for 1.7V.
The loop filter components (CLP, RLP) smooth out the
current pulses from the phase detector and provide a
stable input to the voltage controlled oscillator. The filter
components CLP and RLP determine how fast the loop
acquires lock. Typically RLP =10k and CLP ranges from
0.01µF to 0.1µF.
Minimum On-Time Considerations
Minimum on-time, tON(MIN), is the smallest time duration
that the IC is capable of turning on the top MOSFET. It is
determined by internal timing delays and the gate charge
of the top MOSFET. Low duty cycle applications may
approach this minimum on-time limit and care should be
taken to ensure that:
tON(MIN)
<
VOUT
VIN(f)
20
If the duty cycle falls below what can be accommodated by
the minimum on-time, the IC will begin to skip every other
cycle, resulting in half-frequency operation. The output
voltage will continue to be regulated, but the ripple current
and ripple voltage will increase.
The minimum on-time for the IC is generally about 110ns.
However, as the peak sense voltage decreases the mini-
mum on-time gradually increases. This is of particular
concern in forced continuous applications with low ripple
current at light loads. If the duty cycle drops below the
minimum on-time limit in this situation, a significant
amount of cycle skipping can occur with correspondingly
larger current and voltage ripple.
If an application can operate close to the minimum on-
time limit, an inductor must be chosen that is low enough
in value to provide sufficient ripple amplitude to meet the
minimum on-time requirement. As a general rule, keep
the inductor ripple current for each channel equal to or
greater than 30% of IOUT(MAX) at VIN(MAX).
Efficiency Considerations
The percent efficiency of a switching regulator is equal to
the output power divided by the input power times 100%.
It is often useful to analyze individual losses to determine
what is limiting the efficiency and which change would
produce the most improvement. Percent efficiency can be
expressed as:
%Efficiency = 100% – (L1 + L2 + L3 + ...)
where L1, L2, etc. are the individual losses as a percentage
of input power.
Checking Transient Response
The regulator loop response can be checked by looking at
the load transient response. Switching regulators take
several cycles to respond to a step in DC (resistive) load
current. When a load step occurs, VOUT shifts by an
amount equal to ∆ILOAD • ESR, where ESR is the effective
series resistance of COUT. ∆ILOAD also begins to charge or
discharge COUT, generating the feedback error signal that
forces the regulator to adapt to the current change and
return VOUT to its steady-state value. During this recovery
3731fa