English
Language : 

LTC3727A-1 Datasheet, PDF (10/32 Pages) Linear Technology – High Efficiency, 2-Phase Synchronous Step-Down Switching Regulators
LTC3727A-1
U
OPERATIO (Refer to Functional Diagram)
Main Control Loop
The LTC3727A-1 uses a constant frequency, current mode
step-down architecture with the two controller channels
operating 180 degrees out of phase. During normal opera-
tion, each top MOSFET is turned on when the clock for that
channel sets the RS latch, and turned off when the main
current comparator, I1, resets the RS latch. The peak
inductor current at which I1 resets the RS latch is con-
trolled by the voltage on the ITH pin, which is the output of
each error amplifier EA. The VOSENSE pin receives the
voltage feedback signal, which is compared to the internal
reference voltage by the EA. When the load current in-
creases, it causes a slight decrease in VOSENSE relative to
the 0.8V reference, which in turn causes the ITH voltage to
increase until the average inductor current matches the
new load current. After the top MOSFET has turned off, the
bottom MOSFET is turned on until either the inductor
current starts to reverse, as indicated by current compara-
tor I2, or the beginning of the next cycle.
The top MOSFET drivers are biased from floating boot-
strap capacitor CB, which normally is recharged during
each off cycle through an external diode when the top
MOSFET turns off. As VIN decreases to a voltage close to
VOUT, the loop may enter dropout and attempt to turn on
the top MOSFET continuously. The dropout detector de-
tects this and forces the top MOSFET off for about 400ns
every tenth cycle to allow CB to recharge.
The main control loop is shut down by pulling the RUN/SS
pin low. Releasing RUN/SS allows an internal 1.2µA
current source to charge soft-start capacitor CSS. When
CSS reaches 1.5V, the main control loop is enabled with the
ITH voltage clamped at approximately 30% of its maximum
value. As CSS continues to charge, the ITH pin voltage is
gradually released allowing normal, full-current opera-
tion. When both RUN/SS1 and RUN/SS2 are low, all
LTC3727A-1 controller functions are shut down, including
the 7.5V and 3.3V regulators.
Low Current Operation
The FCB pin is a multifunction pin providing two func-
tions: 1) to provide regulation for a secondary winding by
temporarily forcing continuous PWM operation on
both controllers; and 2) to select between two modes of
low current operation. When the FCB pin voltage is below
0.8V, the controller forces continuous PWM current
mode operation. In this mode, the top and bottom
MOSFETs are alternately turned on to maintain the output
voltage independent of direction of inductor current.
When the FCB pin is below VINTVCC – 2V but greater than
0.8V, the controller enters Burst Mode operation. Burst
Mode operation sets a minimum output current level
before inhibiting the top switch and turns off the synchro-
nous MOSFET(s) when the inductor current goes nega-
tive. This combination of requirements will, at low cur-
rents, force the ITH pin below a voltage threshold that will
temporarily inhibit turn-on of both output MOSFETs until
the output voltage drops. There is 60mV of hysteresis in
the burst comparator B tied to the ITH pin. This hysteresis
produces output signals to the MOSFETs that turn them
on for several cycles, followed by a variable “sleep”
interval depending upon the load current. The resultant
output voltage ripple is held to a very small value by
having the hysteretic comparator follow the error ampli-
fier gain block.
Frequency Synchronization
The phase-locked loop allows the internal oscillator to be
synchronized to an external source via the PLLIN pin. The
output of the phase detector at the PLLFLTR pin is also the
DC frequency control input of the oscillator that operates
over a 250kHz to 550kHz range corresponding to a DC
voltage input from 0V to 2.4V. When locked, the PLL
aligns the turn on of the top MOSFET to the rising edge of
the synchronizing signal. When PLLIN is left open, the
PLLFLTR pin goes low, forcing the oscillator to its mini-
mum frequency.
3727a1f
10