English
Language : 

ISL6622 Datasheet, PDF (8/12 Pages) Intersil Corporation – VR11.1 Compatible Synchronous Rectified Buck MOSFET Drivers
ISL6622
Pre-POR Overvoltage Protection
While VCC is below its POR level, the upper gate is held low
and LGATE is connected to the PHASE pin via an internal
10kΩ (typically) resistor. By connecting the PHASE node to
the gate of the low side MOSFET, the driver offers some
passive protection to the load if the upper MOSFET(s) is or
becomes shorted. If the PHASE node goes higher than the
gate threshold of the lower MOSFET, it results in the
progressive turn-on of the device and the effective clamping
of the PHASE node’s rise. The actual PHASE node clamping
level depends on the lower MOSFET’s electrical
characteristics, as well as the characteristics of the input
supply and the path connecting it to the respective PHASE
node.
Internal Bootstrap Device
The ISL6622 features an internal bootstrap Schottky diode.
Simply adding an external capacitor across the BOOT and
PHASE pins completes the bootstrap circuit. The bootstrap
function is also designed to prevent the bootstrap capacitor
from overcharging due to the large negative swing at the
trailing-edge of the PHASE node. This reduces the voltage
stress on the BOOT to PHASE pins.
The bootstrap capacitor must have a maximum voltage
rating well above the maximum voltage intended for UVCC.
Its minimum capacitance value can be estimated from
Equation 1:
CBOOT_CAP ≥ Δ-----V---Q-B---U-O----GO----A-T---T_---C-E---A----P-
(EQ. 1)
QUGATE=
Q-----G-----1----•-----U----V-----C-----C--
VGS1
•
NQ1
where QG1 is the amount of gate charge per upper MOSFET
at VGS1 gate-source voltage and NQ1 is the number of
control MOSFETs. The ΔVBOOT_CAP term is defined as the
allowable droop in the rail of the upper gate drive. Select
results are exemplified in Figure 5.
.
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2 20nC
QUGATE = 100nC
50nC
0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ΔVBOOT_CAP (V)
FIGURE 5. BOOTSTRAP CAPACITANCE vs BOOT RIPPLE
VOLTAGE
Power Dissipation
Package power dissipation is mainly a function of the
switching frequency (FSW), the output drive impedance, the
layout resistance, and the selected MOSFET’s internal gate
resistance and total gate charge (QG). Calculating the power
dissipation in the driver for a desired application is critical to
ensure safe operation. Exceeding the maximum allowable
power dissipation level may push the IC beyond the maximum
recommended operating junction temperature. The DFN
package is more suitable for high frequency applications. See
“Layout Considerations” on page 9 for thermal impedance
improvement suggestions. The total gate drive power losses
due to the gate charge of MOSFETs and the driver’s internal
circuitry and their corresponding average driver current can
be estimated using Equations 2 and 3, respectively:
PQg_TOT = PQg_Q1 + PQg_Q2 + IQ • VCC
PQ g _Q1
=
Q-----G-----1----•-----U----V-----C-----C----2--
VGS1
•
FS
W
•
NQ
1
P Q g _Q2
=
Q-----G-----2----•-----L---V-----C-----C----2--
VGS2
•
FSW
•
NQ2
(EQ. 2)
IDR
=
⎛
⎜
⎝
Q-----G-----1----•-----U----V-----C-----C-----•-----N----Q-----1-
VGS1
+
-Q----G-----2----•-----LV---V--G---C-S----C2-----•-----N----Q-----2-⎠⎟⎞
• FSW + IQ
(EQ. 3)
where the gate charge (QG1 and QG2) is defined at a
particular gate to source voltage (VGS1 and VGS2) in the
corresponding MOSFET datasheet; IQ is the driver’s total
quiescent current with no load at both drive outputs; NQ1
and NQ2 are number of upper and lower MOSFETs,
respectively; UVCC and LVCC are the drive voltages for
both upper and lower FETs, respectively. The IQ*VCC
product is the quiescent power of the driver without a load.
8
FN6470.2
October 30, 2008