English
Language : 

ISL6227_07 Datasheet, PDF (24/28 Pages) Intersil Corporation – Dual Mobile-Friendly PWM Controller with DDR Option
ISL6227
Confining the Negative Phase Node Voltage Swing
with Schottky Diode
At each switching cycle, the body diode of the lower MOSFET
will conduct before the MOSFET is turned on, as the inductor
current is flowing to the output capacitor. This will result in a
negative voltage on the phase node. The higher the load
current, the lower this negative voltage. This voltage will ring
back less negative when the lower MOSFET is turned on.
A total 400ns period is given to the current sample-and-hold
circuit on the ISEN pin to sense the current going through
the lower MOSFET after the upper MOSFET turns off. An
excessive negative voltage on the lower MOSFET will be
treated as overcurrent. In order to confine this voltage, a
schottky diode can be used in parallel with the lower
MOSFET for high load current applications. PCB layout
parasitics should be minimized in order to reduce the
negative ringing of phase voltage.
The second concern for the phase node voltage going into
negative is that the boot strap capacitor between the BOOT
and PHASE pin could get be charged higher than VCC
voltage, exceeding the 6.5V absolute maximum voltage
between BOOT and PHASE when the phase node voltage
became negative. A resistor can be placed between the
cathode of the boot strap diode and BOOT pin to increase
the charging time constant of the boot cap. This resistor will
not affect the turn-on and off of the upper MOSFET.
Schottky diode can reduce the reverse recovery of the lower
MOSFET when transition from freewheeling to blocking,
therefore, it is generally good practice to have a schottky
diode closely parallel with the lower MOSFET. B340LA, from
Diodes, Inc.®, can be used as the external schottky diode.
Tuning the Turn-on of Upper MOSFET
The turn-on speed of the upper MOSFET can be adjusted by
the resistor connecting the boot cap to the BOOT pin of the
chip. This resistor can confine the voltage ringing on the boot
capacitor from coupling to the boot pin. This resistor slows
down only the turn-on of the upper MOSFET.
If the upper MOSFET is turned on very fast, it could result in
a very high dv/dt on the phase node, which could couple into
the lower MOSFET gate through the miller capacitor,
causing momentous shoot-through. This phenomenon,
together with the reverse recovery of the body diode of the
lower MOSFET, can over-shoot the phase node voltage to
beyond the voltage rating of the MOSFET. However, a bigger
resistor will slow the turn-on of the MOSFET too much and
lower the efficiency. Trade-offs need to be made in choosing
a suitable resistor value.
System Loop Gain and Stability
The system loop gain is a product of three transfer functions:
1. the transfer function from the output voltage to the
feedback point,
2. the transfer function of the internal compensation circuit
from the feedback point to the error amplifier output voltage,
3. and the transfer function from the error amplifier output to
the converter output voltage.
These transfer functions are written in a closed form in the
Theory of Operation section on page 18. The external
capacitor, in parallel with the upper resistor of the resistor
divider, Cz, can be used to tune the loop gain and phase
margin. Other component parameters, such as the inductor
value, can be changed for a wider cross-over frequency of the
system loop gain. A body plot of the loop gain transfer function
with a 45 degree phase margin (a 60 degree phase margin is
better) is desirable to cover component parameter variations.
Testing the Overvoltage on Buck Converters
For synchronous buck converters, if an active source is used
to raise the output voltage for the overvoltage protection test,
the buck converter will behave like a boost converter and
dump energy from the external source to the input. The
overvoltage test can be done on ISL6227 by connecting the
VSEN pin to an external voltage source or signal generator
through a diode. When the external voltage, or signal
generator voltage, is tuned to a higher level than the
overvoltage threshold (the lower MOSFET will be on), it
indicates the overvoltage protection works. This kind of
overvoltage protection does not require an external schottky
in parallel with the output capacitor.
Layout Considerations
Power and Signal Layer Placement on the PCB
As a general rule, power layers should be close together,
either on the top or bottom of the board, with signal layers on
the opposite side of the board. For example, prospective
layer arrangement on a 4 layer board is shown below:
1. Top Layer: ISL6227 signal lines
2. Signal Ground
3. Power Layers: Power Ground
4. Bottom Layer: Power MOSFET, Inductors and other
Power traces
It is a good engineering practice to separate the power
voltage and current flowing path from the control and logic
level signal path. The controller IC will stay on the signal
layer, which is isolated by the signal ground to the power
signal traces.
24
FN9094.4
December 21, 2006