English
Language : 

ISL6334A_14 Datasheet, PDF (22/31 Pages) Intersil Corporation – VR11.1, 4-Phase PWM Controller with Light Load Efficiency Enhancement and Load Current Monitoring Features
ISL6334, ISL6334A
successful soft-start and a fixed delay tD5. VR_RDY will be
pulled low when an undervoltage or overvoltage condition is
detected, or the controller is disabled by a reset from
EN_PWR, EN_VTT, POR, or VID OFF-code.
Undervoltage Detection
The undervoltage threshold is set at 50% of the VID code.
When the output voltage at VSEN is below the undervoltage
threshold, VR_RDY is pulled low.
Overvoltage Protection
Regardless of the VR being enabled or not, the ISL6334,
ISL6334A overvoltage protection (OVP) circuit will be active
after its POR. The OVP thresholds are different under different
operation conditions. When VR is not enabled and during the
soft-start intervals tD1, tD2 and tD3, the OVP threshold is
1.273V. Once the controller detects valid VID input, the OVP
trip point will be changed to DAC plus 175mV.
Two actions are taken by ISL6334, ISL6334A to protect the
microprocessor load when an overvoltage condition occurs.
At the inception of an overvoltage event, all PWM outputs are
commanded low instantly (less than 20ns). This causes the
Intersil drivers to turn on the lower MOSFETs and pull the
output voltage below a level to avoid damaging the load. When
the VDIFF voltage falls below the DAC plus 75mV, PWM
signals enter a high-impedance state. The Intersil drivers
respond to the high-impedance input by turning off both upper
and lower MOSFETs. If the overvoltage condition reoccurs,
ISL6334, ISL6334A will again command the lower MOSFETs to
turn on. ISL6334, ISL6334A will continue to protect the load in
this fashion as long as the overvoltage condition occurs.
Once an overvoltage condition is detected, normal PWM
operation ceases until ISL6334, ISL6334A is reset. Cycling
the voltage on EN_PWR, EN_VTT or VCC below the
POR-falling threshold will reset the controller. Cycling the
VID codes will not reset the controller..
VR_RDY
Overcurrent Protection
ISL6334, ISL6334A has two levels of overcurrent protection.
Each phase is protected from a sustained overcurrent
condition by limiting its peak current, while the combined
phase currents are protected on an instantaneous basis.
In instantaneous protection mode, ISL6334, ISL6334A
utilizes the sensed average current IAVG to detect an
overcurrent condition. See “Channel-Current Balance” on
page 16 for more details on how the average current is
measured. The average current is continually compared with
a constant 105µA reference current, as shown in Figure 10.
Once the average current exceeds the reference current, a
comparator triggers the converter to shutdown.
The current out of IMON pin is equal to the sensed average
current IAVG. With a resistor from IMON to GND, the voltage
at IMON will be proportional to the sensed average current
and the resistor value. The ISL6334, ISL6334A continuously
monitors the voltage at IMON pin. If the voltage at IMON pin
is higher than 1.11V, a comparator triggers the overcurrent
shutdown. By increasing the resistor between IMON and
GND, the overcurrent protection threshold can be adjusted
to be less than 105µA. For example, the overcurrent
threshold for the sensed average current IAVG can be set to
95µA by using a 11.8kΩ resistor from IMON to GND.
At the beginning of overcurrent shutdown, the controller
places all PWM signals in a high-impedance state within
20ns, commanding the Intersil MOSFET driver ICs to turn off
both upper and lower MOSFETs. The system remains in this
state a period of 4096 switching cycles. If the controller is still
enabled at the end of this wait period, it will attempt a
soft-start. If the fault remains, the trip-retry cycles will
continue indefinitely (as shown in Figure 11) until either
controller is disabled or the fault is cleared. Note that the
energy delivered during trip-retry cycling is much less than
during full-load operation, so there is no thermal hazard
during this kind of operation.
OUTPUT CURRENT
UV
50%
DAC
VDIFF
SOFT-START, FAULT
AND CONTROL LOGIC
+
OC
-
105µA
IAVG
+
OV
-
+
OC
-
1.11V
IMON
VID + 0.175V
FIGURE 10. VR_RDY AND PROTECTION CIRCUITRY
22
0A
OUTPUT VOLTAGE
0V
2ms/DIV
FIGURE 11. OVERCURRENT BEHAVIOR IN HICCUP MODE.
FSW = 500kHz
FN6482.2
February 1, 2013