English
Language : 

HC5526 Datasheet, PDF (10/18 Pages) Intersil Corporation – ITU CO/PABX SLIC with Low Power Standby
HC5526
IM
TIP
RF
ZL
+
ZTR
+
VTR -
VTX
-
+-
1
+
EG
-
IM
RING RF
HC5526
A = 250
A = 250
A=4
VTX
+
VTX
-
ZT
RSN
IM
1000
ZRX
+
VRX
-
FIGURE 16. SIMPLIFIED AC TRANSMISSION CIRCUIT
Therefore:
ZT = 1000 • (ZTR – 2RF)
(EQ. 16)
Equation 16 can now be used to match the SLIC’s
impedance to any known line impedance (ZTR).
Example:
Calculate ZT to make ZTR = 600Ω in series with 2.16µF.
RF = 20Ω.
ZT = 1000 • 600 + -j-ω------•----2----.-1---1-6-----•----1---0----–---6- – 2 • 20
ZT = 560kΩ in series with 2.16nF.
(AC) 2-Wire to 4-Wire Gain
The 2-wire to 4-wire gain is equal to VTX/ VTR.
From Equations 9 and 10 with VRX = 0:
A2 – 4 = V-V----TT---R-X-- = Z----T-----⁄-Z--1-T--0---⁄0---1-0--0---+0----02----R-----F-
(EQ. 17)
(AC) 4-Wire to 2-Wire Gain
The 4-wire to 2-wire gain is equal to VTR/VRX.
From Equations 9, 10 and 11 with EG = 0:
For applications where the 2-wire impedance (ZTR,
A4 – 2 = V-V----RT----RX-- = –Z---Z-R---T--X-- • -1-------Z0------0--T------0------+----Z-2--L-R-----F-----+-----Z---L--
(EQ. 18)
Equation 15) is chosen to equal the line impedance (ZL), the
expression for A4-2 simplifies to:
A4 – 2 = –Z---Z-R---T--X- • 12--
(EQ. 19)
(AC) 4-Wire to 4-Wire Gain
The 4-wire to 4-wire gain is equal to VTX/VRX.
From Equations 9, 10 and 11 with EG = 0:
A4 – 4 = V-V----RT----XX-- = –Z---Z-R---T--X- • -1-------Z0------0--T-----Z-0----L--+---+--2---2R----R-F---F--+-----Z---L--
(EQ. 20)
Transhybrid Circuit
The purpose of the transhybrid circuit is to remove the receive
signal (VRX) from the transmit signal (VTX), thereby preventing
an echo on the transmit side. This is accomplished by using an
external op amp (usually part of the CODEC) and by the
inversion of the signal from the 4-wire receive port (RSN) to the
4-wire transmit port (VTX). Figure 17 shows the transhybrid
circuit. The input signal will be subtracted from the output signal
if I1 equals I2. Node analysis yields the following equation:
R-V----TT----XX-- + V---Z--R--B--X-- = 0
(EQ. 21)
The value of ZB is then:
ZB = –RTX • V-V----RT----XX--
(EQ. 22)
Where VRX/VTX equals 1/ A4-4.
Therefore:
ZB = RTX • Z---Z-R---T--X- • -1-------Z0------0--T-----Z-0----L--+---+--2---2R----R-F---F--+-----Z---L--
(EQ. 23)
Example:
Given: RTX = 20kΩ, ZRX = 280kΩ, ZT = 562kΩ (standard
value), RF = 20Ω and ZL = 600Ω.
The value of ZB = 18.7kΩ.
66