English
Language : 

ICE2QR0665G_14 Datasheet, PDF (12/27 Pages) Infineon Technologies AG – Off-Line SMPS Quasi-Resonant PWM Controller with integrated 650V CoolMOS? and startup cell in DSO-16/12
CoolSET™Q1
ICE2QR0665G
Functional Description
This time delay should be matched by adjusting the time constant of the RC network which is calculated as:
3.3.2 Ringing suppression time
After MOSFET is turned off, there will be some oscillation on VDS, which will also appear on the voltage on ZC
pin. To avoid mis-triggering by such oscillations to turn on the MOSFET, a ringing suppression timer is
implemented. This suppression time is depended on the voltage VZC. If the voltage VZC is lower than the
threshold VZCRS, a longer preset time tZCRS2 is applied. However, if the voltage VZC is higher than the threshold, a
shorter time tZCRS1 is set.
3.3.2.1 Switch on determination
After the gate drive goes to low, it cannot be changed to high during ring suppression time.
After ring suppression time, the gate drive can be turned on when the ZC counter value is higher or equal to
up/down counter value.
However, it is also possible that the oscillation between primary inductor and drain-source capacitor damps very
fast and IC cannot detect enough zero crossings and ZC counter value will not be high enough to turn on the
gate drive. In this case, a maximum off time is implemented. After gate drive has been remained off for the
period of TOffMax, the gate drive will be turned on again regardless of the counter values and VZC. This function
can effectively prevent the switching frequency from going lower than 20kHz. Otherwise it will cause audible
noise during start up.
3.3.3 Switch Off Determination
In the converter system, the primary current is sensed by an external shunt resistor, which is connected
between low-side terminal of the main power switch and the common ground. The sensed voltage across the
shunt resistor VCS is applied to an internal current measurement unit, and its output voltage V1 is compared with
the regulation voltage VFB. Once the voltage V1 exceeds the voltage VFB, the output flip-flop is reset. As a result,
the main power switch is switched off. The relationship between the V1 and the VCS is described by:
To avoid mis-triggering caused by the voltage spike across the shunt resistor at the turn on of the main power
switch, a leading edge blanking time, tLEB, is applied to the output of the comparator. In other words, once the
gate drive is turned on, the minimum on time of the gate drive is the leading edge blanking time.
In addition, there is a maximum on time, tOnMax, limitation implemented in the IC. Once the gate drive has been
in high state longer than the maximum on time, it will be turned off to prevent the switching frequency from going
too low because of long on time.
3.4
Current Limitation
There is a cycle by cycle current limitation realized by the current limit comparator to provide an over-current
detection. The source current of the MOSFET is sensed via a sense resistor RCS. By means of RCS the source
current is transformed to a sense voltage VCS which is fed into the pin CS. If the voltage VCS exceeds an internal
voltage limit, adjusted according to the Mains voltage, the comparator immediately turns off the gate drive.
To prevent the Current Limitation process from distortions caused by leading edge spikes, a Leading Edge
Blanking time (tLEB) is integrated in the current sensing path.
Data Sheet
12
V2.1, 2014-04-01