English
Language : 

IC41C8512 Datasheet, PDF (5/21 Pages) Integrated Circuit Solution Inc – 512K x 8 bit Dynamic RAM with EDO Page Mode
IC41C8512
IC41LV8512
Functional Description
The IC41C8512 and IC41LV8512 is a CMOS DRAM
optimized for high-speed bandwidth, low power applica-
tions. During READ or WRITE cycles, each bit is uniquely
addressed through the 10 address bits. These are entered
10 bits (A0-A9) at a time. The row address is latched by the
Row Address Strobe (RAS). The column address is latched
by the Column Address Strobe (CAS) . RAS is used to latch
the first ten bits and CAS is used to latch the latter nine bits.
Memory Cycle
A memory cycle is initiated by bring RAS LOW and it is
terminated by returning both RAS and CAS HIGH. To
ensures proper device operation and data integrity any
memory cycle, once initiated, must not be ended or
aborted before the minimum tRAS time has expired. A new
cycle must not be initiated until the minimum precharge
time tRP, tCP has elapsed.
Read Cycle
A read cycle is initiated by the falling edge of CAS or OE,
whichever occurs last, while holding WE HIGH. The
column address must be held for a minimum time specified
by tAR. Data Out becomes valid only when tRAC, tAA, tCAC
and tOE are all satisfied. As a result, the access time is
dependent on the timing relationships between these
parameters.
Write Cycle
A write cycle is initiated by the falling edge of CAS and
WE, whichever occurs last. The input data must be valid
at or before the falling edge of CAS or WE, whichever
occurs first.
Refresh Cycle
To retain data, 1024 refresh cycles are required in each
16 ms period. There are two ways to refresh the memory.
1. By clocking each of the 1024 row addresses (A0 through
A9) with RAS at least once every 16 ms. Any read, write,
read-modify-write or RAS-only cycle refreshes the ad-
dressed row.
2. Using a CAS-before-RAS refresh cycle. CAS-before-
RAS refresh is activated by the falling edge of RAS,
while holding CAS LOW. In CAS-before-RAS refresh
cycle, an internal 10-bit counter provides the row ad-
dresses and the external address inputs are ignored.
CAS-before-RAS is a refresh-only mode and no data
access or device selection is allowed. Thus, the output
remains in the High-Z state during the cycle.
Extended Data Out Page Mode
EDO page mode operation permits all 1024 columns within
a selected row to be randomly accessed at a high data rate.
In EDO page mode read cycle, the data-out is held to the
next CAS cycle’s falling edge, instead of the rising edge.
For this reason, the valid data output time in EDO page
mode is extended compared with the fast page mode. In
the fast page mode, the valid data output time becomes
shorter as the CAS cycle time becomes shorter. Therefore,
in EDO page mode, the timing margin in read cycle is
larger than that of the fast page mode even if the CAS cycle
time becomes shorter.
In EDO page mode, due to the extended data function, the
CAS cycle time can be shorter than in the fast page mode
if the timing margin is the same.
The EDO page mode allows both read and write opera-
tions during one RAS cycle, but the performance is
equivalent to that of the fast page mode in that case.
Power-On
After application of the VCC supply, an initial pause of
200 µs is required followed by a minimum of eight initial-
ization cycles (any combination of cycles containing a
RAS signal).
During power-on, it is recommended that RAS track with
VCC or be held at a valid VIH to avoid current surges.
Integrated Circuit Solution Inc.
5
DR029-0A 09/28/2001