English
Language : 

XR16M581 Datasheet, PDF (11/51 Pages) Exar Corporation – 1.62V TO 3.63V UART WITH 16-BYTE FIFO AND VLIO INTERFACE
XR16M581
REV. 1.0.1
1.62V TO 3.63V UART WITH 16-BYTE FIFO AND VLIO INTERFACE
2.7 Programmable Baud Rate Generator with Fractional Divisor
The M581 has independent Baud Rate Generators (BRGs) with prescalers for the transmitter and receiver.
The prescalers are controlled by a software bit in the MCR register. The MCR register bit-7 sets the prescalers
to divide the input crystal or external clock by 1 or 4. The output of the prescaler clocks to the BRG. The BRG
further divides this clock by a programmable divisor between 1 and (216 - 0.0625) in increments of 0.0625 (1/
16) to obtain a 16X or 8X or 4X sampling clock of the serial data rate. The sampling clock is used by the
transmitter for data bit shifting and receiver for data sampling. For transmitter and receiver, the M581 provides
respective BRG divisors. The BRG divisor (DLL, DLM, and DLD registers) defaults to the value of ’1’ (DLL =
0x01, DLM = 0x00 and DLD = 0x00) upon reset. Therefore, the BRG must be programmed during initialization
to the operating data rate. The DLL and DLM registers provide the integer part of the divisor and the DLD
registers provides the fractional part of the divisor. The four lower bits of the DLD are used to select a value
from 0 (for setting 0000) to 0.9375 or 15/16 (for setting 1111). Programming the Baud Rate Generator
Registers DLL, DLM and DLD provides the capability for selecting the operating data rate. Table 3 shows the
standard data rates available with a 24MHz crystal or external clock at 16X clock rate. If the pre-scaler is used
(MCR bit-7 = 1), the output data rate will be 4 times less than that shown in Table 3. At 8X sampling rate, these
data rates would double. And at 4X sampling rate, they would quadruple. Also, when using 8X sampling mode,
please note that the bit-time will have a jitter (+/- 1/16) whenever the DLD is non-zero and is an odd number.
When using a non-standard data rate crystal or external clock, the divisor value can be calculated with the
following equation(s):
Required Divisor (decimal)=(XTAL1 clock frequency / prescaler) /(serial data rate x 16), with 16X mode, DLD[5:4]=’00’
Required Divisor (decimal)= (XTAL1 clock frequency / prescaler / (serial data rate x 8), with 8X mode, DLD[5:4] = ’01’
Required Divisor (decimal)= (XTAL1 clock frequency / prescaler / (serial data rate x 4), with 4X mode, DLD[5:4] = ’10’
The closest divisor that is obtainable in the M581 can be calculated using the following formula:
ROUND( (Required Divisor - TRUNC(Required Divisor) )*16)/16 + TRUNC(Required Divisor), where
DLM = TRUNC(Required Divisor) >> 8
DLL = TRUNC(Required Divisor) & 0xFF
DLD = ROUND( (Required Divisor-TRUNC(Required Divisor) )*16)
In the formulas above, please note that:
TRUNC (N) = Integer Part of N. For example, TRUNC (5.6) = 5.
ROUND (N) = N rounded towards the closest integer. For example, ROUND (7.3) = 7 and ROUND (9.9) = 10.
A >> B indicates right shifting the value ’A’ by ’B’ number of bits. For example, 0x78A3 >> 8 = 0x0078.
2.7.1 Independent TX/RX BRG
The XR16M581 has two independent sets of TX and RX baud rate generator. See Figure 7. TX and RX can
work in different baud rate by setting DLD, DLL and DLM register. For example, TX can transmit data to the
remote UART at 9600 bps while RX receives data from remote UART at 921.6 Kbps. For the baud rate setting,
please See ”Section 4.13, Baud Rate Generator Registers (DLL, DLM and DLD) - Read/Write” on
page 37.
11