English
Language : 

EN25Q16 Datasheet, PDF (9/40 Pages) Eon Silicon Solution Inc. – 16 Megabit Serial Flash Memory with 4Kbyte Uniform Sector
EN25Q16
z All instructions that modify data must be preceded by a Write Enable (WREN) instruction to set
the Write Enable Latch (WEL) bit. This bit is returned to its reset state by the following events:
– Power-up
– Write Disable (WRDI) instruction completion or Write Status Register (WRSR) instruction
completion or Page Program (PP) instruction completion or Sector Erase (SE) instruction
completion or Block Erase (BE) instruction completion or Chip Erase (CE) instruction
completion
z The Block Protect (BP2, BP1, BP0) bits allow part of the memory to be configured as read-only.
This is the Software Protected Mode (SPM).
z The Write Protect (WP#) signal allows the Block Protect (BP2, BP1, BP0) bits and Status Register
Protect (SRP) bit to be protected. This is the Hardware Protected Mode (HPM).
z In addition to the low power consumption feature, the Deep Power-down mode offers extra
software protection from inadvertent Write, Program and Erase instructions, as all instructions are
ignored except one particular instruction (the Release from Deep Power-down instruction).
Table 3. Protected Area Sizes Sector Organization
Status Register
Content
BP2 BP1 BP0
Bit Bit Bit
0
0
0
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Memory Content
Protected Areas
Addresses
None
Block 0 to 30
Block 0 to 29
Block 0 to 27
Block 0 to 23
Block 0 to 15
All
All
None
000000h-1EFFFFh
000000h-1DFFFFh
000000h-1BFFFFh
000000h-17FFFFh
000000h-0FFFFFh
000000h-1FFFFFh
000000h-1FFFFFh
Density (KB)
None
1984KB
1920KB
1792KB
1536KB
1024KB
2048KB
2048KB
Portion
None
Lower 31/32
Lower 15/16
Lower 7/8
Lower 3/4
Lower 1/2
All
All
INSTRUCTIONS
All instructions, addresses and data are shifted in and out of the device, most significant bit first. Serial
Data Input (DI) is sampled on the first rising edge of Serial Clock (CLK) after Chip Select (CS#) is
driven Low. Then, the one-byte instruction code must be shifted in to the device, most significant bit first,
on Serial Data Input (DI), each bit being latched on the rising edges of Serial Clock (CLK).
The instruction set is listed in Table 4. Every instruction sequence starts with a one-byte instruction
code. Depending on the instruction, this might be followed by address bytes, or by data bytes, or by
both or none. Chip Select (CS#) must be driven High after the last bit of the instruction sequence has
been shifted in. In the case of a Read Data Bytes (READ), Read Data Bytes at Higher Speed
(Fast_Read), Read Status Register (RDSR) or Release from Deep Power-down, and Read Device ID
(RDI) instruction, the shifted-in instruction sequence is followed by a data-out sequence. Chip Select
(CS#) can be driven High after any bit of the data-out sequence is being shifted out.
In the case of a Page Program (PP), Sector Erase (SE), Block Erase (BE), Chip Erase (CE), Write
Status Register (WRSR), Write Enable (WREN), Write Disable (WRDI) or Deep Power-down (DP)
instruction, Chip Select (CS#) must be driven High exactly at a byte boundary, otherwise the instruction
is rejected, and is not executed. That is, Chip Select (CS#) must driven High when the number of clock
pulses after Chip Select (CS#) being driven Low is an exact multiple of eight. For Page Program, if at
any time the input byte is not a full byte, nothing will happen and WEL will not be reset.
In the case of multi-byte commands of Page Program (PP), and Release from Deep Power Down
(RES ) minimum number of bytes specified has to be given, without which, the command will be
ignored.
This Data Sheet may be revised by subsequent versions
9
or modifications due to changes in technical specifications.
©2004 Eon Silicon Solution, Inc., www.eonssi.com
Rev. E, Issue Date: 2009/10/21