English
Language : 

ATTINY43U_1 Datasheet, PDF (12/182 Pages) ATMEL Corporation – 8-bit Microcontroller with 4K Bytes In-System Programmable Flash and Boost Converter
4.6.1 SPH and SPL — Stack Pointer Register
Bit
0x3E (0x5E)
0x3D (0x5D)
Read/Write
Read/Write
Initial Value
Initial Value
15
SP15
SP7
7
R/W
R/W
RAMEND
RAMEND
14
SP14
SP6
6
R/W
R/W
RAMEND
RAMEND
13
SP13
SP5
5
R/W
R/W
RAMEND
RAMEND
12
SP12
SP4
4
R/W
R/W
RAMEND
RAMEND
11
SP11
SP3
3
R/W
R/W
RAMEND
RAMEND
10
SP10
SP2
2
R/W
R/W
RAMEND
RAMEND
9
SP9
SP1
1
R/W
R/W
RAMEND
RAMEND
8
SP8
SP0
0
R/W
R/W
RAMEND
RAMEND
SPH
SPL
4.7 Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the
chip. No internal clock division is used.
Figure 4-4 on page 12 shows the parallel instruction fetches and instruction executions enabled
by the Harvard architecture and the fast access Register File concept. This is the basic pipelin-
ing concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions
per cost, functions per clocks, and functions per power-unit.
Figure 4-4. The Parallel Instruction Fetches and Instruction Executions
T1
T2
T3
T4
clkCPU
1st Instruction Fetch
1st Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch
Figure 4-5 on page 12 shows the internal timing concept for the Register File. In a single clock
cycle an ALU operation using two register operands is executed, and the result is stored back to
the destination register.
Figure 4-5. Single Cycle ALU Operation
T1
T2
T3
T4
clkCPU
Total Execution Time
Register Operands Fetch
ALU Operation Execute
Result Write Back
12 ATtiny43U
8048B–AVR–03/09