English
Language : 

ADSP-BF539_08 Datasheet, PDF (18/60 Pages) Analog Devices – Blackfin Embedded Processor
ADSP-BF539/ADSP-BF539F
designer’s development schedule, increasing productivity. Sta-
tistical profiling enables the programmer to nonintrusively poll
the processor as it is running the program. This feature, unique
to VisualDSP++, enables the software developer to passively
gather important code execution metrics without interrupting
the real-time characteristics of the program. Essentially, the
developer can identify bottlenecks in software quickly and effi-
ciently. By using the profiler, the programmer can focus on
those areas in the program that impact performance and take
corrective action.
Debugging both C/C++ and assembly programs with the
VisualDSP++ debugger, programmers can:
• View mixed C/C++ and assembly code (interleaved source
and object information).
• Insert breakpoints.
• Set conditional breakpoints on registers, memory,
and stacks.
• Trace instruction execution.
• Perform linear or statistical profiling of program execution.
• Fill, dump, and graphically plot the contents of memory.
• Perform source level debugging.
• Create custom debugger windows.
The VisualDSP++ IDDE lets programmers define and manage
software development. Its dialog boxes and property pages let
programmers configure and manage all of the Blackfin develop-
ment tools, including the color syntax highlighting in the
VisualDSP++ editor. This capability permits programmers to:
• Control how the development tools process inputs and
generate outputs.
• Maintain a one-to-one correspondence with the tool’s
command line switches.
The VisualDSP++ Kernel (VDK) incorporates scheduling and
resource management tailored specifically to address the mem-
ory and timing constraints of DSP programming. These
capabilities enable engineers to develop code more effectively,
eliminating the need to start from the very beginning, when
developing new application code. The VDK features include
threads, critical and unscheduled regions, semaphores, events,
and device flags. The VDK also supports priority-based, pre-
emptive, cooperative, and time-sliced scheduling approaches. In
addition, the VDK was designed to be scalable. If the application
does not use a specific feature, the support code for that feature
is excluded from the target system.
Because the VDK is a library, a developer can decide whether to
use it or not. The VDK is integrated into the VisualDSP++
development environment, but can also be used via standard
command line tools. When the VDK is used, the development
environment assists the developer with many error prone tasks
and assists in managing system resources, automating the gen-
eration of various VDK-based objects, and visualizing the
system state, when debugging an application that uses the VDK.
Use the Expert Linker to visually manipulate the placement of
code and data on the embedded system. View memory utiliza-
tion in a color-coded graphical form, easily move code and data
to different areas of the processor or external memory with the
drag of the mouse and examine run-time stack and heap usage.
The Expert Linker is fully compatible with existing Linker Defi-
nition File (LDF), allowing the developer to move between the
graphical and textual environments.
Analog Devices emulators use the IEEE 1149.1 JTAG Test
Access Port of the ADSP-BF539/ADSP-BF539F processors to
monitor and control the target board processor during emula-
tion. The emulator provides full-speed emulation, allowing
inspection and modification of memory, registers, and proces-
sor stacks. Nonintrusive in-circuit emulation is assured by the
use of the processor’s JTAG interface—the emulator does not
affect target system loading or timing.
In addition to the software and hardware development tools
available from Analog Devices third parties provide a wide
range of tools supporting the Blackfin processor family. Hard-
ware tools include Blackfin processor PC plug-in cards. Third
party software tools include DSP libraries, real-time operating
systems, and block diagram design tools.
DESIGNING AN EMULATOR COMPATIBLE
PROCESSOR BOARD
The Analog Devices family of emulators are tools that every sys-
tem developer needs to test and debug hardware and software
systems. Analog Devices has supplied an IEEE 1149.1 JTAG
Test Access Port (TAP) on each JTAG processor. The emulator
uses the TAP to access the internal features of the processor,
allowing the developer to load code, set breakpoints, observe
variables, observe memory, and examine registers. The proces-
sor must be halted to send data and commands, but once an
operation has been completed by the emulator, the processor
system is set running at full speed with no impact on
system timing.
To use these emulators, the target board must include a header
that connects the processor’s JTAG port to the emulator.
For details on target board design issues including mechanical
layout, single processor connections, multiprocessor scan
chains, signal buffering, signal termination, and emulator pod
logic, see Analog Devices JTAG Emulation Technical Reference
(EE-68) on the Analog Devices web site (www.analog.com)—
use site search on “EE-68.” This document is updated regularly
to keep pace with improvements to emulator support.
EXAMPLE CONNECTIONS AND LAYOUT
CONSIDERATIONS
Figure 9 shows an example circuit connection of the ADSP-
BF539/ADSP-BF539F to a MOST network. This diagram is
intended as an example, and exact connections and recom-
mended circuit values should be obtained from Analog Devices.
Rev. A | Page 18 of 60 | February 2008