English
Language : 

ADSP-BF534_08 Datasheet, PDF (15/68 Pages) Analog Devices – Blackfin Embedded Processor
ADSP-BF534/ADSP-BF536/ADSP-BF537
2.25V TO 3.6V
INPUT VOLTAGE
RANGE
VDDEXT
(LOW-INDUCTANCE)
SET OF DECOUPLING
CAPACITORS
100nF
+
100µF
FDS9431A
10µF
LOW ESR
+
100µF
10µH
+
100µF
ZHCS1000
SHORT AND LOW-
INDUCTANCE WIRE
NOTE: DESIGNER SHOULD MINIMIZE
TRACE LENGTH TO FDS9431A.
VDDEXT
VDDINT
VROU T
VROU T
GND
Figure 5. Voltage Regulator Circuit
CLOCK SIGNALS
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors can
be clocked by an external crystal, a sine wave input, or a buff-
ered, shaped clock derived from an external clock oscillator.
If an external clock is used, it should be a TTL compatible signal
and must not be halted, changed, or operated below the speci-
fied frequency during normal operation. This signal is
connected to the processor’s CLKIN pin. When an external
clock is used, the XTAL pin must be left unconnected.
Alternatively, because the processors include an on-chip oscilla-
tor circuit, an external crystal may be used. For fundamental
frequency operation, use the circuit shown in Figure 6. A
parallel-resonant, fundamental frequency, microprocessor-
grade crystal is connected across the CLKIN and XTAL pins.
The on-chip resistance between CLKIN and the XTAL pin is in
the 500 kΩ range. Further parallel resistors are typically not rec-
ommended. The two capacitors and the series resistor shown in
Figure 6 fine-tune phase and amplitude of the sine frequency.
The capacitor and resistor values shown in Figure 6 are typical
values only. The capacitor values are dependent upon the crystal
manufacturers’ load capacitance recommendations and the PCB
physical layout. The resistor value depends on the drive level
specified by the crystal manufacturer. The user should verify the
customized values based on careful investigations of multiple
devices over temperature range.
A third-overtone crystal can be used for frequencies above
25 MHz. The circuit is then modified to ensure crystal operation
only at the third overtone, by adding a tuned inductor circuit as
shown in Figure 6. A design procedure for third-overtone oper-
ation is discussed in detail in the application note Using Third
Overtone Crystals with the ADSP-218x DSP (EE-168).
The CLKBUF pin is an output pin, and is a buffer version of the
input clock. This pin is particularly useful in Ethernet applica-
tions to limit the number of required clock sources in the
CLKOUT
CLKBUF
BLACKFIN
TO PLL CIRCUITRY
EN
EN
CLKIN
330⍀*
XTAL
FOR OVERTONE
OPERATION ONLY:
18pF*
18pF*
NOTE: VALUES MARKED WITH * MUST BE CUSTOMIZED
DEPENDING ON THE CRYSTAL AND LAYOUT. PLEASE
ANALYZE CAREFULLY.
Figure 6. External Crystal Connections
system. In this type of application, a single 25 MHz or 50 MHz
crystal may be applied directly to the processors. The 25 MHz or
50 MHz output of CLKBUF can then be connected to an exter-
nal Ethernet MII or RMII PHY device.
Because of the default 10× PLL multiplier, providing a 50 MHz
CLKIN exceeds the recommended operating conditions of the
lower speed grades. Because of this restriction, an RMII PHY
requiring a 50 MHz clock input cannot be clocked directly from
the CLKBUF pin for the lower speed grades. In this case, either
provide a separate 50 MHz clock source, or use an RMII PHY
with 25 MHz clock input options. The CLKBUF output is active
by default and can be disabled using the VR_CTL register for
power savings.
The Blackfin core runs at a different clock rate than the on-chip
peripherals. As shown in Figure 7, the core clock (CCLK) and
system peripheral clock (SCLK) are derived from the input
clock (CLKIN) signal. An on-chip PLL is capable of multiplying
the CLKIN signal by a programmable 0.5× to 64× multiplication
factor (bounded by specified minimum and maximum VCO
frequencies). The default multiplier is 10×, but it can be modi-
fied by a software instruction sequence in the PLL_CTL register.
On-the-fly CCLK and SCLK frequency changes can be effected
by simply writing to the PLL_DIV register. Whereas the maxi-
mum allowed CCLK and SCLK rates depend on the applied
voltages VDDINT and VDDEXT, the VCO is always permitted to run
up to the frequency specified by the part’s speed grade. The
CLKOUT pin reflects the SCLK frequency to the off-chip world.
It belongs to the SDRAM interface, but it functions as reference
signal in other timing specifications as well. While active by
default, it can be disabled using the EBIU_SDGCTL and
EBIU_AMGCTL registers.
All on-chip peripherals are clocked by the system clock (SCLK).
The system clock frequency is programmable by means of the
SSEL3–0 bits of the PLL_DIV register. The values programmed
into the SSEL fields define a divide ratio between the PLL output
(VCO) and the system clock. SCLK divider values are 1 through
15. Table 6 illustrates typical system clock ratios.
Rev. E | Page 15 of 68 | March 2008