English
Language : 

593D105X9035B2TE3 Datasheet, PDF (14/18 Pages) Vishay Siliconix – Solid Tantalum Surface Mount Chip Capacitors TANTAMOUNT®, Molded Case, Low ESR
www.vishay.com
Molded Guide
Vishay Sprague
GUIDE TO APPLICATION
1. AC Ripple Current: The maximum allowable ripple
current shall be determined from the formula:
IRMS =
-----P-------
RESR
where,
P = Power dissipation in W at + 25 °C as given in
the tables in the product datasheets (Power
Dissipation).
RESR = The capacitor equivalent series resistance at
the specified frequency
2. AC Ripple Voltage: The maximum allowable ripple
voltage shall be determined from the formula:
VRMS
=
I
RMS
x
Z
or, from the formula:
VRMS = Z
-----P-------
RESR
where,
P = Power dissipation in W at + 25 °C as given in
the tables in the product datasheets (Power
Dissipation).
RESR = The capacitor equivalent series resistance at
the specified frequency
Z = The capacitor impedance at the specified
frequency
2.1 The sum of the peak AC voltage plus the applied DC
voltage shall not exceed the DC voltage rating of the
capacitor.
2.2 The sum of the negative peak AC voltage plus the
applied DC voltage shall not allow a voltage reversal
exceeding 10 % of the DC working voltage at
+ 25 °C.
3. Reverse Voltage: Solid tantalum capacitors are not
intended for use with reverse voltage applied.
However, they have been shown to be capable of
withstanding momentary reverse voltage peaks of up
to 10 % of the DC rating at 25 °C and 5 % of the DC
rating at + 85 °C.
4. Temperature Derating: If these capacitors are to be
operated at temperatures above + 25 °C, the
permissible RMS ripple current or voltage shall be
calculated using the derating factors as shown:
TEMPERATURE
+ 25 °C
+ 85 °C
+ 125 °C
DERATING FACTOR
1.0
0.9
0.4
5. Power Dissipation: Power dissipation will be
affected by the heat sinking capability of the
mounting surface. Non-sinusoidal ripple current may
produce heating effects which differ from those
shown. It is important that the equivalent IRMS value
be established when calculating permissible
operating levels. (Power dissipation calculated using
+ 25 °C temperature rise).
6. Printed Circuit Board Materials: Molded capacitors
are compatible with commonly used printed circuit
board materials (alumina substrates, FR4, FR5, G10,
PTFE-fluorocarbon and porcelanized steel).
7. Attachment:
7.1 Solder Paste: The recommended thickness of the
solder paste after application is 0.007" ± 0.001"
[0.178 mm ± 0.025 mm]. Care should be exercised in
selecting the solder paste. The metal purity should be
as high as practical. The flux (in the paste) must be
active enough to remove the oxides formed on the
metallization prior to the exposure to soldering heat. In
practice this can be aided by extending the solder
preheat time at temperatures below the liquidous
state of the solder.
7.2 Soldering: Capacitors can be attached by
conventional soldering techniques; vapor phase,
convection reflow, infrared reflow, wave soldering,
and hot plate methods. The soldering profile charts
show recommended time/temperature conditions for
soldering. Preheating is recommended. The
recommended maximum ramp rate is 2 °C per s.
Attachment with a soldering iron is not
recommended due to the difficulty of controlling
temperature and time at temperature. The soldering
iron must never come in contact with the capacitor.
7.2.1 Backward and Forward Compatibility: Capacitors
with SnPb or 100 % tin termination finishes can be
soldered using SnPb or lead (Pb)-free soldering
processes.
8. Cleaning (Flux Removal) After Soldering: Molded
capacitors are compatible with all commonly used
solvents such as TES, TMS, Prelete, Chlorethane,
Terpene and aqueous cleaning media. However,
CFC/ODS products are not used in the production of
these devices and are not recommended. Solvents
containing methylene chloride or other epoxy
solvents should be avoided since these will attack
the epoxy encapsulation material.
8.1 When using ultrasonic cleaning, the board may
resonate if the output power is too high. This
vibration can cause cracking or a decrease in the
adherence of the termination. DO NOT EXCEED 9W/l
at 40 kHz for 2 min.
9. Recommended Mounting Pad Geometries: Proper
mounting pad geometries are essential for
successful solder connections. These dimensions
are highly process sensitive and should be designed
to minimize component rework due to unacceptable
solder joints. The dimensional configurations shown
are the recommended pad geometries for both wave
and reflow soldering techniques. These dimensions
are intended to be a starting point for circuit board
designers and may be fine tuned if necessary based
upon the peculiarities of the soldering process
and/or circuit board design.
Revision: 03-Feb-14
7
Document Number: 40074
For technical questions, contact: tantalum@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000