English
Language : 

LP3882EMR-12 Datasheet, PDF (8/19 Pages) Texas Instruments – LP3882 1.5A Fast-Response Ultra Low Dropout Linear Regulators
LP3882
SNVS226F – MARCH 2003 – REVISED APRIL 2013
Application Hints
www.ti.com
EXTERNAL CAPACITORS
To assure regulator stability, input and output capacitors are required as shown in the Typical Application Circuit.
OUTPUT CAPACITOR
At least 4.7µF of output capacitance is required for stability (the amount of capacitance can be increased without
limit). The output capacitor must be located less than 1 cm from the output pin of the IC and returned to a clean
analog ground. The ESR (equivalent series resistance) of the output capacitor must be within the "stable" range
as shown in the graph below over the full operating temperature range for stable operation.
10
1.0
COUT > 4.7 PF
STABLE REGION
0.1
.01
.001
0
1
2
LOAD CURRENT (A)
Figure 20. Minimum ESR vs Output Load Current
Tantalum capacitors are recommended for the output as their ESR is ideally suited to the part's requirements
and the ESR is very stable over temperature. Aluminum electrolytics are not recommended because their ESR
increases very rapidly at temperatures below 10C. Aluminum caps can only be used in applications where lower
temperature operation is not required.
A second problem with Al caps is that many have ESR's which are only specified at low frequencies. The typical
loop bandwidth of a linear regulator is a few hundred kHz to several MHz. If an Al cap is used for the output cap,
it must be one whose ESR is specified at a frequency of 100 kHz or more.
Because the ESR of ceramic capacitors is only a few milli Ohms, they are not suitable for use as output
capacitors on LP388X devices. The regulator output can tolerate ceramic capacitance totaling up to 15% of the
amount of Tantalum capacitance connected from the output to ground.
OUTPUT "BYPASS" CAPACITORS
Many designers place small value "bypass" capacitors at various circuit points to reduce noise. Ceramic
capacitors in the value range of about 1000pF to 0.1µF placed directly on the output of a PNP or P-FET LDO
regulator can cause a loss of phase margin which can result in oscillations, even when a Tantalum output
capacitor is in parallel with it. This is not unique to Texas Instruments Semiconductor LDO regulators, it is true of
any P-type LDO regulator.
The reason for this is that PNP or P-FET regulators have a higher output impedance (compared to an NPN
regulator), which results in a pole-zero pair being formed by every different capacitor connected to the output.
The zero frequency is approximately:
Fz = 1 / (2 X π X ESR X C)
(1)
Where ESR is the equivalent series resistance of the capacitor, and C is the value of capacitance.
The pole frequency is:
Fp = 1 / (2 X π X RL X C)
(2)
Where RL is the load resistance connected to the regulator output.
8
Submit Documentation Feedback
Product Folder Links: LP3882
Copyright © 2003–2013, Texas Instruments Incorporated