English
Language : 

BQ27505-J3 Datasheet, PDF (24/44 Pages) Texas Instruments – System-Side Impedance Track™ Fuel Gauge
bq27505-J3
Not Recommended for New Designs
SLUS986A – OCTOBER 2009 – REVISED FEBRUARY 2010
www.ti.com
(5 mΩ to 20 mΩ typ.) between the SRP and SRN pins and in series with the cell. By integrating charge
passing through the battery, the battery’s SOC is adjusted during battery charge or discharge.
The total battery capacity is found by comparing states of charge before and after applying the load with
the amount of charge passed. When an application load is applied, the impedance of the cell is measured
by comparing the OCV obtained from a predefined function for present SOC with the measured voltage
under load. Measurements of OCV and charge integration determine chemical state of charge and
chemical capacity (Qmax). The initial Qmax values are taken from a cell manufacturers' data sheet
multiplied by the number of parallel cells. It is also used for the value in Design Capacity. The bq27505
acquires and updates the battery-impedance profile during normal battery usage. It uses this profile, along
with SOC and the Qmax value, to determine FullChargeCapacity( ) and StateOfCharge( ), specifically for
the present load and temperature. FullChargeCapacity( ) is reported as capacity available from a fully
charged battery under the present load and temperature until Voltage( ) reaches the Terminate Voltage.
NominalAvailableCapacity( ) and FullAvailableCapacity( ) are the uncompensated (no or light load)
versions of RemainingCapacity( ) and FullChargeCapacity( ) respectively.
The bq27505 has two flags accessed by the Flags( ) function that warns when the battery’s SOC has
fallen to critical levels. When RemainingCapacity( ) falls below the first capacity threshold, specified in
SOC1 Set Threshold, the [SOC1] (State of Charge Initial) flag is set. The flag is cleared once
RemainingCapacity( ) rises above SOC1 Set Threshold. The bq27505’s BAT_LOW pin automatically
reflects the status of the [SOC1] flag. This flag is enabled when BL_INT bit in Operation Configuration B
is set. All units are in mAh.
When Voltage( ) falls below the system shut down threshold voltage, SysDown Set Volt Threshold, the
[SYSDOWN] flag is set, serving as a final warning to shut down the system. The SOC_INT also signals.
When Voltage( ) rises above SysDown Clear Voltage and the [SYSDOWM] flag has already been set,
the [SYSDOWN] flag is cleared. The SOC_INT also signals such change. All units are in mV.
When the voltage is discharged to Final Voltage, the SOC will be set as 0.
5.2 IMPEDANCE TRACK™ VARIABLES
The bq27505 has several data flash variables that permit the user to customize the Impedance Track™
algorithm for optimized performance. These variables are dependent upon the power characteristics of the
application as well as the cell itself.
5.2.1 Load Mode
Load Mode is used to select either the constant-current or constant-power model for the Impedance
Track™ algorithm as used in Load Select (see Load Select). When Load Mode is 0, the Constant
Current Model is used (default). When 1, the Constant Power Model is used. The [LDMD] bit of
CONTROL_STATUS reflects the status of Load Mode.
5.2.2 Load Select
Load Select defines the type of power or current model to be used to compute load-compensated
capacity in the Impedance Track™ algorithm. If Load Mode = 0 (Constant-Current) then the options
presented in Table 5-1 are available.
Table 5-1. Constant-Current Model Used When Load Mode = 0
LoadSelect Value
0
1(default)
2
3
4
Current Model Used
Average discharge current from previous cycle: There is an internal register that records the average discharge
current through each entire discharge cycle. The previous average is stored in this register.
Present average discharge current: This is the average discharge current from the beginning of this discharge cycle
until present time.
Average current: based on AverageCurrent( )
Current: based off of a low-pass-filtered version of AverageCurrent( ) (t =14 s)
Design capacity / 5: C Rate based off of Design Capacity /5 or a C/5 rate in mA.
24
FUNCTIONAL DESCRIPTION
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated