English
Language : 

OPA2694ID Datasheet, PDF (21/28 Pages) Texas Instruments – Dual, Wideband, Low-Power, Current Feedback Operational Amplifier
OPA2694
www.ti.com
and set RS from the plot of Recommended RS vs
Capacitive Load. Low parasitic capacitive loads (< 5pF)
may not need an RS, since the OPA2694 is nominally
compensated to operate with a 2pF parasitic load. If a long
trace is required, and the 6dB signal loss intrinsic to a
doubly-terminated transmission line is acceptable,
implement a matched impedance transmission line using
microstrip or stripline techniques (consult an ECL design
handbook for microstrip and stripline layout techniques). A
50Ω environment is normally not necessary onboard, and
in fact, a higher impedance environment will improve
distortion, as shown in the Distortion versus Load plots.
With a characteristic board trace impedance defined
based on board material and trace dimensions, a matching
series resistor into the trace from the output of the
OPA2694 is used as well as a terminating shunt resistor at
the input of the destination device. Remember also that the
terminating impedance will be the parallel combination of
the shunt resistor and the input impedance of the
destination device: this total effective impedance should
be set to match the trace impedance. The high output
voltage and current capability of the OPA2694 allows
multiple destination devices to be handled as separate
transmission lines, each with their own series and shunt
terminations. If the 6dB attenuation of a doubly-terminated
transmission line is unacceptable, a long trace can be
series-terminated at the source end only. Treat the trace as
a capacitive load in this case and set the series resistor
value as shown in the plot of Recommended RS vs
Capacitive Load. This will not preserve signal integrity as
well as a doubly-terminated line. If the input impedance of
the destination device is low, there will be some signal
attenuation due to the voltage divider formed by the series
output into the terminating impedance.
e) Socketing a high-speed part like the OPA2694 is not
recommended. The additional lead length and pin-to-pin
capacitance introduced by the socket can create an
extremely troublesome parasitic network which can make
it almost impossible to achieve a smooth, stable frequency
response. Best results are obtained by soldering the
OPA2694 directly onto the board.
SBOS320D − SEPTEMBER 2004 − REVISED APRIL 2013
INPUT AND ESD PROTECTION
The OPA2694 is built using a very high speed
complementary bipolar process. The internal junction
breakdown voltages are relatively low for these very small
geometry devices. These breakdowns are reflected in the
Absolute Maximum Ratings table. All device pins have
limited ESD protection using internal diodes to the power
supplies, as shown in Figure 14.
These diodes provide moderate protection to input
overdrive voltages above the supplies as well. The
protection diodes can typically support 30mA continuous
current. Where higher currents are possible (for example,
in systems with ±15V supply parts driving into the
OPA2694), current-limiting series resistors should be
added into the two inputs. Keep these resistor values as
low as possible, since high values degrade both noise
performance and frequency response.
+VCC
External
Pin
−VCC
Internal
Circuitry
Figure 14. Internal ESD Protection
21