English
Language : 

BQ2947_16 Datasheet, PDF (10/24 Pages) Texas Instruments – Overvoltage Protection for 2-Series to 4-Series Cell Li-Ion Batteries
bq2947
SLUSB15E – SEPTEMBER 2012 – REVISED FEBRUARY 2016
Feature Description (continued)
8.3.1 Pin Details
www.ti.com
8.3.1.1 Input Sense Voltage, Vx
These inputs sense each battery cell voltage. A series resistor and a capacitor across the cell for each input is
required for noise filtering and stable voltage monitoring.
8.3.1.2 Output Drive, OUT
This terminal serves as the fault signal output, and may be ordered in either Active High or Open Drain Active
Low options.
8.3.1.3 Supply Input, VDD
This terminal is the unregulated input power source for the IC. A series resistor is connected to limit the current,
and a capacitor is connected to ground for noise filtering.
8.3.1.4 External Delay Capacitor, CD
This terminal is connected to an external capacitor that sets the delay timer during an overvoltage fault event.
The CD pin includes a timeout detection circuit to ensure that the output drives active even with a shorted or
open capacitor during an overvoltage event.
The capacitor connected on the CD pin rapidly charges to a voltage if any one of the cell inputs exceeds the OV
threshold. Then the delay circuit gradually discharges the capacitor on the CD pin. Once this capacitor
discharges below a set voltage, the OUT transitions from an inactive to active state.
To calculate the delay, use the following equation:
tCD (sec) = K × CCD (µF), where K = 10 to 20 range.
(1)
Example: If CCD= 0.1 µF (typical), then the delay timer range is
tCD (s) = 10 × 0.1 = 1 s (Minimum)
tCD (s) = 20 × 0.1 = 2 s (Maximum)
NOTE
The tolerance on the capacitor used for CCD increases the range of the tCD timer.
8.4 Device Functional Modes
8.4.1 NORMAL Mode
When all of the cell voltages are below the overvoltage threshold, VOV, the device operates in NORMAL mode.
The device monitors the differential cell voltages connected across (V1–VSS), (V2–V1), (V3–V2), and (V4–V3).
The OUT pin is inactive, and is low if configured active high, or, if configured active low, is an open drain being
externally pulled up.
8.4.2 OVERVOLTAGE Mode
OVERVOLTAGE mode is detected if any of the cell voltage exceeds the overvoltage threshold, VOV for
configured OV delay time. The OUT pin is activated after a delay time set by the capacitance in the CD pin. The
OUT pin will either pull high internally, if configured as active high, or will be pulled low internally if configured as
active low. An external FET is then turned on, shorting the fuse to ground, which allows the battery and/or
charger power to blow the fuse. When all of the cell voltages fall below the (VOV–VHYS), the device returns to
NORMAL mode.
8.4.3 Customer Test Mode
It is possible to reduce test time for checking the overvoltage function by simply shorting the external CD
capacitor to VSS. In this case, the OV delay would be reduced to the t(CD_GND) value, which has a maximum of
170 ms.
10
Submit Documentation Feedback
Copyright © 2012–2016, Texas Instruments Incorporated
Product Folder Links: bq2947