English
Language : 

THS3001 Datasheet, PDF (20/32 Pages) Texas Instruments – 420-MHz HIGH-SPEED CURRENT-FEEDBACK AMPLIFIERS
THS3001, THS3002
420-MHz HIGH-SPEED CURRENT-FEEDBACK AMPLIFIERS
SLOS217A – JULY 1998 – REVISED JUNE 1999
APPLICATION INFORMATION
noise calculations and noise figure
Noise can cause errors on very small signals. This is especially true for amplifying small signals coming over
a transmission line or an antenna. The noise model for current-feedback amplifiers (CFB) is the same as for
voltage feedback amplifiers (VFB). The only difference between the two is that CFB amplifiers generally specify
different current-noise parameters for each input, while VFB amplifiers usually only specify one noise-current
parameter. The noise model is shown in Figure 49. This model includes all of the noise sources as follows:
• en = amplifier internal voltage noise (nV/√Hz)
• IN+ = noninverting current noise (pA/√Hz)
• IN– = inverting current noise (pA/√Hz)
• eRx = thermal voltage noise associated with each resistor (eRx = 4 kTRx )
RS
eRs
en
Noiseless
eni
+
_
eno
IN+
eRf
RF
IN–
eRg
RG
Figure 49. Noise Model
+ Ǹǒ Ǔ ) ǒ ) Ǔ ) ǒ ǒ ø ǓǓ ) ) ǒ ø Ǔ The total equivalent input noise density (eni) is calculated by using the following equation:
2
2
2
eni
en
IN
RS
IN– RF RG
4 kTRs 4 kT RF RG
Where:
k = Boltzmann’s constant = 1.380658 × 10–23
T = temperature in degrees Kelvin (273 +°C)
RF || RG = parallel resistance of RF and RG
+ + ǒ ) Ǔ To get the equivalent output noise of the amplifier, just multiply the equivalent input noise density (eni) by the
overall amplifier gain (AV).
eno eni AV
eni 1
RF
RG
(Noninverting Case)
20
• POST OFFICE BOX 655303 DALLAS, TEXAS 75265