English
Language : 

TMS320DM6446 Datasheet, PDF (10/214 Pages) Texas Instruments – Digital Media System on-Chip
TMS320DM6446
Digital Media System on-Chip
SPRS283 – DECEMBER 2005
www.ti.com
• Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of
the Dcache or Icache, and regions of virtual memory.
The write buffer is used for all writes to a noncachable bufferable region, write-through region and write
misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for
cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a
four-address buffer. The Dcache write-back has eight data word entries and a single address entry.
2.3.5 Tightly Coupled Memory (TCM)
ARM internal RAM is provided for storing real-time and performance-critical code/data and the Interrupt
Vector table. ARM internal ROM enables non-EMIFA boot options, such as NAND and UART. The RAM
and ROM memories interfaced to the ARM926EJ-S via the tightly coupled memory interface that provides
for separate instruction and data bus connections. Since the ARM TCM does not allow instructions on the
D-TCM bus or data on the I-TCM bus, an arbiter is included so that both data and instructions can be
stored in the internal RAM/ROM. The arbiter also allows accesses to the RAM/ROM from extra-ARM
sources (e.g., EDMA or other masters). The ARM926EJ-S has built-in DMA support for direct accesses to
the ARM internal memory from a non-ARM master. Because of the time-critical nature of the TCM link to
the ARM internal memory, all accesses from non-ARM devices are treated as DMA transfers.
Instruction and Data accesses are differentiated via accessing different memory map regions, with the
instruction region from 0x0000 through 0x7FFF and data from 0x8000 through 0xFFFF. Placing the
instruction region at 0x0000 is necesssary to allow the ARM Interrupt Vector table to be placed at 0x0000,
as required by the ARM architecture. The internal 16-KB RAM is split into two physical banks of 8KB
each, which allows simultaneous instruction and data accesses to be accomplished if the code and data
are in separate banks.
2.3.6 Advanced High-performance Bus (AHB)
The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and
the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the
Config Bus and the external memories bus.
2.3.7 Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB)
To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an
Embedded Trace Macrocell (ETM). The ARM926ES-J Subsystem in DM644X also includes the
Embedded Trace Buffer (ETB). The ETM consists of two parts:
• Trace Port provides real-time trace capability for the ARM9.
• Triggering facilities provide trigger resources, which include address and data comparators, counter,
and sequencers.
The DM644X trace port is not pinned out and is instead only connected to the Embedded Trace Buffer.
The ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured
trace data.
2.3.8 ARM Memory Mapping
The ARM memory map is shown in the Memory Map section of this document. The ARM has access to
memories shown in the following sections.
2.3.8.1 ARM Internal Memories
The ARM has access to the following ARM internal memories:
• 16KB ARM Internal RAM on TCM interface, logically separated into two 8KB pages to allow
simulatenous access on any given cycle if there are separate acecsses for code (I-TCM bus) and data
(D-TCM) to the different memory regions.
• 16KB ARM Internal ROM
10
Device Overview