English
Language : 

DS1302 Datasheet, PDF (5/14 Pages) Dallas Semiconductor – Trickle Charge Timekeeping Chip
DS1302
Diode and resistor selection is determined by the user according to the maximum current desired for
battery or super cap charging. The maximum charging current can be calculated as illustrated in the
following example. Assume that a system power supply of 5 volt is applied to VCC2 and a super cap is
connected to VCC1. Also assume that the trickle charger has been enabled with one diode and resistor R1
between VCC2 and VCC1. The maximum current Imax would therefore be calculated as follows:
Imax = (5.0V – diode drop) / R1
~ (5.0V – 0.7V) / 2 kΩ
~ 2.2 mA
Obviously, as the super cap charges, the voltage drop between VCC2 and VCC1 will decrease and therefore
the charge current will decrease.
CLOCK/CALENDAR BURST MODE
The clock/calendar command byte specifies burst mode operation. In this mode the first eight
clock/calendar registers can be consecutively read or written (see Figure 4) starting with bit 0 of address
0.
If the write protect bit is set high when a write clock/calendar burst mode is specified, no data transfer
will occur to any of the eight clock/calendar registers (this includes the control register). The trickle
charger is not accessible in burst mode.
At the beginning of a clock burst read, the current time is transferred to a second set of registers. The
time information is read from these secondary registers, while the clock may continue to run. This
eliminates the need to re-read the registers in case of an update of the main registers during a read.
RAM
The static RAM is 31 x 8 bytes addressed consecutively in the RAM address space.
RAM BURST MODE
The RAM command byte specifies burst mode operation. In this mode, the 31 RAM registers can be
consecutively read or written (see Figure 4) starting with bit 0 of address 0.
REGISTER SUMMARY
A register data format summary is shown in Figure 4.
CRYSTAL SELECTION
A 32.768 kHz crystal can be directly connected to the DS1302 via X1 and X2. The crystal selected for
use should have a specified load capacitance (CL) of 6 pF. For more information on crystal selection and
crystal layout consideration, please consult Application Note 58, “Crystal Considerations with Real
Time Clocks."
5 of 14