English
Language : 

ST10F273E Datasheet, PDF (23/179 Pages) STMicroelectronics – 16-bit MCU with 512 Kbyte Flash memory and 36 Kbyte RAM
ST10F273E
Memory organization
interface, using the BUSCONx register corresponding to address matching ADDRSELx
register.
The XRAM2 address range is F’0000h-F’7FFFFh if XPEN (bit 2 of SYSCON register), and
XRAM2EN (bit 3 of XPERCON register) are set. If bit XPEN is cleared, then any access in
the address range programmed for XRAM2 will be directed to external memory interface,
using the BUSCONx register corresponding to address matching ADDRSELx register.
The lower portion of the XRAM2 (address range F’0000h-F’3FFFFh) represents also the
Stand-by RAM, which can be maintained biased through EA / VSTBY pin when main supply
VDD is turned off.
As the XRAM appears like external memory, it cannot be used as system stack or as
register banks. The XRAM is not provided for single bit storage and therefore is not bit
addressable.
SFR/ESFR: 1024 bytes (2 x 512 bytes) of address space is reserved for the special function
register areas. SFRs are Wordwide registers which are used to control and to monitor the
function of the different on-chip units.
CAN1: Address range 00’EF00h - 00’EFFFh is reserved for the CAN1 Module access. The
CAN1 is enabled by setting XPEN bit 2 of the SYSCON register and by setting CAN1EN bit
0 of the XPERCON register. Accesses to the CAN Module use demultiplexed addresses
and a 16-bit data bus (only word accesses are possible). Two wait states give an access
time of 62.5ns at 64 MHz CPU clock. No tri-state wait states are used.
CAN2: Address range 00’EE00h - 00’EEFFh is reserved for the CAN2 Module access. The
CAN2 is enabled by setting XPEN bit 2 of the SYSCON register and by setting CAN2EN bit
1 of the new XPERCON register. Accesses to the CAN Module use demultiplexed
addresses and a 16-bit data bus (only word accesses are possible). Two wait states give an
access time of 62.5ns at 64 MHz CPU clock. No tri-state wait states are used.
If one or the two CAN modules are used, Port 4 cannot be programmed to output all eight
segment address lines. Thus, only four segment address lines can be used, reducing the
external memory space to 5 Mbytes (1 Mbyte per CS line).
RTC: Address range 00’ED00h - 00’EDFFh is reserved for the RTC Module access. The
RTC is enabled by setting XPEN bit 2 of the SYSCON register and bit 4 of the XPERCON
register. Accesses to the RTC Module use demultiplexed addresses and a 16-bit data bus
(only word accesses are possible). Two waitstates give an access time of 62.5ns at 64 MHz
CPU clock. No tristate waitstate is used.
PWM1: Address range 00’EC00h - 00’ECFFh is reserved for the PWM1 Module access.
The PWM1 is enabled by setting XPEN bit 2 of the SYSCON register and bit 6 of the
XPERCON register. Accesses to the PWM1 Module use demultiplexed addresses and a 16-
bit data bus (only word accesses are possible). Two waitstates give an access time of
62.5ns at 64MHz CPU clock. No tristate waitstate is used. Only word access is allowed.
ASC1: Address range 00’E900h - 00’E9FFh is reserved for the ASC1 Module access. The
ASC1 is enabled by setting XPEN bit 2 of the SYSCON register and bit 7 of the XPERCON
register. Accesses to the ASC1 Module use demultiplexed addresses and a 16-bit data bus
(only word accesses are possible). Two waitstates give an access time of 62.5 ns at 64 MHz
CPU clock. No tristate waitstate is used.
SSC1: Address range 00’E800h - 00’E8FFh is reserved for the SSC1 Module access. The
SSC1 is enabled by setting XPEN bit 2 of the SYSCON register and bit 8 of the XPERCON
register. Accesses to the SSC1 Module use demultiplexed addresses and a 16-bit data bus
23/179