English
Language : 

37M602 Datasheet, PDF (63/182 Pages) SMSC Corporation – ENHANCED SUPER I/O CONTROLLER WITH INFRARED SUPPORT
issue a new track position that will exceed the
maximum track that is present in the extended
area.
To return to the standard floppy range (0-255) of
tracks, a Relative Seek should be issued to
cross the track 255 boundary.
A Relative Seek can be used instead of the
normal Seek, but the host is required to
calculate the difference between the current
head location and the new (target) head
location. This may require the host to issue a
Read ID command to ensure that the head is
physically on the track that software assumes it
to be. Different FDC commands will return
different cylinder results which may be difficult
to keep track of with software without the Read
ID command.
Perpendicular Mode
The Perpendicular Mode command should be
issued prior to executing Read/Write/Format
commands that access a disk drive with
perpendicular recording capability. With this
command, the length of the Gap2 field and VCO
enable timing can be altered to accommodate
the unique requirements of these drives. Table
30 describes the effects of the WGATE and
GAP bits for the Perpendicular Mode command.
Upon a reset, the FDC will default to the
conventional mode (WGATE = 0, GAP = 0).
Selection of the 500 Kbps and 1 Mbps
perpendicular modes is independent of the
actual data rate selected in the Data Rate Select
Register. The user must ensure that these two
data rates remain consistent.
The Gap2 and VCO timing requirements for
perpendicular recording type drives are dictated
by the design of the read/write head. In the
design of this head, a pre-erase head precedes
the normal read/write head by a distance of 200
micrometers. This works out to about 38 bytes
at a 1 Mbps recording density. Whenever the
write head is enabled by the Write Gate signal,
the pre-erase head is also activated at the same
time. Thus, when the write head is initially
turned on, flux transitions recorded on the media
for the first 38 bytes will not be preconditioned
with the pre-erase head since it has not yet been
activated. To accommodate this head activation
and deactivation time, the Gap2 field is
expanded to a length of 41 bytes. The format
field shown on Page 57 illustrates the change in
the Gap2 field size for the perpendicular format.
On the read back by the FDC, the controller
must begin synchronization at the beginning of
the sync field. For the conventional mode, the
internal PLL VCO is enabled (VCOEN)
approximately 24 bytes from the start of the
Gap2 field. But, when the controller operates in
the 1 Mbps perpendicular mode (WGATE = 1,
GAP = 1), VCOEN goes active after 43 bytes to
accommodate the increased Gap2 field size.
For both cases, and approximate two-byte
cushion is maintained from the beginning of the
sync field for the purposes of avoiding write
splices in the presence of motor speed variation.
For the Write Data case, the FDC activates
Write Gate at the beginning of the sync field
under the conventional mode. The controller
then writes a new sync field, data address mark,
data field, and CRC as shown on page 57. With
the pre-erase head of the perpendicular drive,
the write head must be activated in the Gap2
field to insure a proper write of the new sync
field. For the 1 Mbps perpendicular mode
(WGATE = 1, GAP = 1), 38 bytes will be written
in the Gap2 space. Since the bit density is
proportional to the data rate, 19 bytes will be
written in the Gap2 field for the 500 Kbps
perpendicular mode (WGATE = 1, GAP =0).
It should be noted that none of the alterations in
Gap2 size, VCO timing, or Write Gate timing
affect normal program flow. The information
provided here is just for background purposes
63