English
Language : 

SP2209E Datasheet, PDF (11/15 Pages) Sipex Corporation – High ESD Dual Port RS-232 Transceiver
equipment that are accessible to personnel during
normal usage. The transceiver IC receives most
of the ESD current when the ESD source is
applied to the connector pins. The test circuit for
EN61000-4-2 is shown on Figure 11. There are
two methods within EN61000-4-2, the Air
Discharge method and the Contact Discharge
method.
With the Air Discharge Method, an ESD voltage
is applied to the equipment under test (EUT)
through air. This simulates an electrically charged
person ready to connect a cable onto the rear of
the system only to find an unpleasant zap just
before the person touches the back panel. The
high energy potential on the person discharges
through an arcing path to the rear panel of the
system before he or she even touches the system.
This energy, whether discharged directly or
through air, is predominantly a function of the
discharge current rather than the discharge
voltage. Variables with an air discharge such as
approach speed of the object carrying the ESD
potential to the system and humidity will tend to
change the discharge current. For example, the
rise time of the discharge current varies with the
approach speed.
The Contact Discharge Method applies the ESD
current directly to the EUT. This method was
devised to reduce the unpredictability of the
ESD arc. The discharge current rise time is
constant since the energy is directly transferred
without the air-gap arc. In situations such as
hand held systems, the ESD charge can be directly
discharged to the equipment from a person already
RRCC
SSWW11
DC Power
Source
holding the equipment. The current is transferred
on to the keypad or the serial port of the equipment
directly and then travels through the PCB and finally
to the IC.
The circuit model in Figures 10 and 11 represent
the typical ESD testing circuit used for all three
methods. The CS is initially charged with the DC
power supply when the first switch (SW1) is on.
Now that the capacitor is charged, the second
switch (SW2) is on while SW1 switches off. The
voltage stored in the capacitor is then applied
through RS, the current limiting resistor, onto the
device under test (DUT). In ESD tests, the SW2
switch is pulsed so that the device under test
receives a duration of voltage.
For the Human Body Model, the current limiting
resistor (R ) and the source capacitor (C ) are
S
S
1.5kΩ an 100pF, respectively. For EN61000-4-2,
the current limiting resistor (RS) and the source
capacitor
(C )
S
are
330Ω
an
150pF,
respectively.
The higher CS value and lower RS value in the
EN61000-4-2 model are more stringent than the
Human Body Model. The larger storage capacitor
injects a higher voltage to the test point when
SW2 is switched on. The lower current limiting
resistor increases the current charge onto the test
point.
APPLICATIONS
With six drivers and ten receivers, the SP2209E
device is ideal for applications requiring two
RS-232 ports such as in desktop or portable
computers. Refer to Figure 13. For typical DB9
serial ports for Data Terminal Equipment (DTE)
RSS
SSWW22
CSS
Device
Under
Test
Figure 10. ESD Test Circuit for Human Body Model
SP2209E DS/06
SP2209E High ESD Dual Port RS-232 Transceivers
11
© Copyright 2000 Sipex Corporation