English
Language : 

S-T111 Datasheet, PDF (6/23 Pages) Seiko Instruments Inc – HIGH RIPPLE-REJECTION LOW DROPOUT CMOS VOLTAGE REGULATOR
HIGH RIPPLE-REJECTION LOW DROPOUT CMOS VOLTAGE REGULATOR
S-T111 Series
Rev.2.1_00
„ Electrical Characteristics
Table 4
(Ta = 25°C unless otherwise specified)
Item
Symbol
Conditions
Min. Typ. Max. Unit Test
Circuit
Output voltage*1
VOUT(E) VIN = VOUT(S) + 1.0 V, IOUT = 30 mA
VOUT(S) VOUT(S) VOUT(S)
× 0.99
× 1.01
V
1
Output current*2
Dropout voltage*3
IOUT
VIN ≥ VOUT(S) + 1.0 V
150*5
⎯
⎯
mA
3
Vdrop
IOUT = 50 mA
1.5 V ≤ VOUT(S) ≤ 2.7 V
Not specified
V
1
2.8 V ≤ VOUT(S) ≤ 5.5 V
⎯
0.08 0.14
V
1
IOUT = 100 mA 1.5 V ≤ VOUT(S) ≤ 1.6 V
⎯
0.32 0.55
V
1
1.7 V ≤ VOUT(S) ≤ 1.8 V
⎯
0.28 0.47
V
1
1.9 V ≤ VOUT(S) ≤ 2.3 V
⎯
0.25 0.35
V
1
2.4 V ≤ VOUT(S) ≤ 2.7 V
⎯
0.20 0.29
V
1
Line regulation
2.8 V ≤ VOUT(S) ≤ 5.5 V
⎯
ΔVOUT1 VOUT(S) + 0.5 V ≤ VIN ≤ 6.5 V,
ΔVIN•VOUT IOUT = 30 mA
⎯
0.19 0.26
V
1
0.05 0.2 % / V 1
Load regulation
ΔVOUT2
VIN = VOUT(S) + 1.0 V,
1.0 mA ≤ IOUT ≤ 80 mA
⎯
12
40
mV
1
Output voltage
ΔVOUT VIN = VOUT(S) + 1.0 V, IOUT = 10 mA,
temperature coefficient*4 ΔTa• VOUT −40°C ≤ Ta ≤ 85°C
⎯
±100
⎯ ppm /°C 1
Current consumption
during operation
ISS1
VIN = VOUT(S) + 1.0 V, ON/OFF pin = ON,
no load
⎯
50
90
μA
2
Current consumption
during shutdown
ISS2
VIN = VOUT(S) + 1.0 V, ON/OFF pin = OFF, ⎯
no load
0.1
1.0
μA
2
Input voltage
Shutdown pin
input voltage “H”
VIN
⎯
VSH
VIN = VOUT(S) + 1.0 V, RL = 1.0 kΩ
2.0
⎯
6.5
V
⎯
1.5
⎯
⎯
V
4
Shutdown pin
input voltage “L”
VSL
VIN = VOUT(S) + 1.0 V, RL = 1.0 kΩ
⎯
⎯
0.3
V
4
Shutdown pin
input current “H”
ISH
VIN = 6.5 V, VON/OFF = 6.5 V
−0.1
⎯
0.1
μA
4
Shutdown pin
input current “L”
ISL
VIN = 6.5 V, VON/OFF = 0 V
−0.1
⎯
0.1
μA
4
Ripple rejection
Short-circuit current
RR
VIN = VOUT(S) + 1.0 V, f = 1.0 kHz,
ΔVrip = 0.5 Vrms, IOUT = 30 mA
⎯
80
⎯
dB
5
Ishort
VIN = VOUT(S) + 1.0 V, ON/OFF pin = ON,
VOUT = 0 V
⎯
200
⎯
mA
3
*1. VOUT(S): Specified output voltage
VOUT(E): Actual output voltage at the fixed load
The output voltage when fixing IOUT(= 30 mA) and inputting VOUT(S) + 1.0 V
*2. The output current at which the output voltage becomes 95% of VOUT(E) after gradually increasing the output current.
*3. Vdrop = VIN1 − (VOUT3 × 0.98)
VOUT3 is the output voltage when VIN = VOUT(S) + 1.0 V and IOUT = 50 mA or IOUT = 100 mA.
VIN1 is the input voltage at which the output voltage becomes 98% of VOUT3 after gradually decreasing the input voltage.
*4. The change in temperature [mV/°C] is calculated using the following equation.
ΔVOUT [mV / °C]*1 = VOUT(S)[V]*2 × ΔVOUT [ppm / °C]*3 ÷ 1000
ΔTa
ΔTa • VOUT
*1. The change in temperature of the output voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
*5. The output current can be at least this value.
Due to restrictions on the package power dissipation, this value may not be satisfied. Attention should be paid to the
power dissipation of the package when the output current is large.
This specification is guaranteed by design.
6
Seiko Instruments Inc.