English
Language : 

R2043K Datasheet, PDF (31/48 Pages) RICOH electronics devices division – 4-wire Serial Interface
R2043K/T
Oscillation Adjustment Circuit
The oscillation adjustment circuit can be used to correct a time count gain or loss with high precision by varying
the number of 1-second clock pulses once per 20 seconds or 60 seconds. When DEV bit in the Oscillation
Adjustment Register is set to 0, R2043K/T varies number of 1-second clock pulses once per 20 seconds. When
DEV bit is set to 1, R2043K/T varies number of 1-second clock pulses once per 60 seconds. The oscillation
adjustment circuit can be disabled by writing the settings of "*, 0, 0, 0, 0, 0, *" ("*" representing "0" or "1") to the
F6, F5, F4, F3, F2, F1, and F0 bits in the oscillation adjustment circuit. Conversely, when such oscillation
adjustment is to be made, an appropriate oscillation adjustment value can be calculated by the equation below
for writing to the oscillation adjustment circuit.
(1) When Oscillation Frequency (* 1) Is Higher Than Target Frequency (* 2) (Causing Time Count Gain)
When DEV=0:
Oscillation adjustment value (*3) = (Oscillation frequency - Target Frequency + 0.1)
Oscillation frequency × 3.051 × 10-6
≈ (Oscillation Frequency – Target Frequency) × 10 + 1
When DEV=1:
Oscillation adjustment value (*3) = (Oscillation frequency - Target Frequency + 0.0333)
Oscillation frequency × 1.017 × 10-6
≈ (Oscillation Frequency – Target Frequency) × 30 + 1
* 1) Oscillation frequency:
Frequency of clock pulse output from the 32KOUT pin at normal temperature in the manner described
in " P.28 Measurement of Oscillation Frequency ".
* 2) Target frequency:
Desired frequency to be set. Generally, a 32.768-kHz crystal oscillator has such temperature
characteristics as to have the highest oscillation frequency at normal temperature. Consequently,
the crystal oscillator is recommended to have target frequency settings on the order of 32.768 to
32.76810 kHz (+3.05ppm relative to 32.768 kHz). Note that the target frequency differs depending
on the environment or location where the equipment incorporating the RTC is expected to be
operated.
* 3) Oscillation adjustment value:
Value that is to be finally written to the F0 to F6 bits in the Oscillation Adjustment Register and is
represented in 7-bit coded decimal notation.
(2) When Oscillation Frequency Is Equal To Target Frequency (Causing Time Count neither Gain nor Loss)
Oscillation adjustment value = 0, +1, -64, or –63
(3) When Oscillation Frequency Is Lower Than Target Frequency (Causing Time Count Loss)
When DEV=0:
Oscillation adjustment value = (Oscillation frequency - Target Frequency)
Oscillation frequency × 3.051 × 10-6
≈ (Oscillation Frequency – Target Frequency) × 10
When DEV=1:
Oscillation adjustment value = (Oscillation frequency - Target Frequency)
Oscillation frequency × 1.017 × 10-6
≈ (Oscillation Frequency – Target Frequency) × 30
Oscillation adjustment value calculations are exemplified below
(A) For an oscillation frequency = 32768.85Hz and a target frequency = 32768.05Hz
When setting DEV bit to 0:
Oscillation adjustment value = (32768.85 - 32768.05 + 0.1) / (32768.85 × 3.051 × 10-6)
≈ (32768.85 - 32768.05) × 10 + 1
= 9.001 ≈ 9
In this instance, write the settings (DEV,F6,F5,F4,F3,F2,F1,F0)=(0,0,0,0,1,0,0,1) in the oscillation adjustment
register. Thus, an appropriate oscillation adjustment value in the presence of any time count gain represents a
distance from 01h.
When setting DEV bit to 1:
Rev.2.05
12345
- 31 -