English
Language : 

CAT5401_13 Datasheet, PDF (8/15 Pages) ON Semiconductor – Quad Digital Potentiometer (POT)
CAT5401
INSTRUCTION AND REGISTER DESCRIPTION
Device Type/Address Byte
The first byte sent to the CAT5401 from the master/
processor is called the Device Address Byte. The most
significant four bits of the Device Type address are a device
type identifier. These bits for the CAT5401 are fixed at
0101[B] (refer to Figure 4).
The two least significant bits in the slave address byte, A1
− A0, are the internal slave address and must match the
physical device address which is defined by the state of the
A1 − A0 input pins for the CAT5401 to successfully continue
the command sequence. Only the device which slave
address matches the incoming device address sent by the
master executes the instruction. The A1 − A0 inputs can be
actively driven by CMOS input signals or tied to VCC or
VSS. The remaining two bits in the device address byte must
be set to 0.
Instruction Byte
The next byte sent to the CAT5401 contains the
instruction and register pointer information. The four most
significant bits used provide the instruction opcode I [3:0].
The R1 and R0 bits point to one of the four data registers of
each associated potentiometer. The least two significant bits
point to one of four Wiper Control Registers. The format is
shown in Figure 5.
Table 11. DATA REGISTER SELECTION
Data Register Selected
R1
R0
DR0
0
0
DR1
0
1
DR2
1
0
DR3
1
1
DeviceType
Identifier
Slave Address
ID3
ID2
0
1
(MSB)
ID1
ID0
0
0
0
1
Figure 4. Identification Byte Format
A1
A0
(LSB)
I3
(MSB)
Instruction
Opcode
Data Register
Selection
I2
I1
I0
R1
R0
Figure 5. Instruction Byte Format
WCR/Pot Selection
P1
P0
(LSB)
WIPER CONTROL AND DATA REGISTERS
Wiper Control Register (WCR)
The CAT5401 contains four 6-bit Wiper Control
Registers, one for each potentiometer. The Wiper Control
Register output is decoded to select one of 64 switches along
its resistor array. The contents of the WCR can be altered in
four ways: it may be written by the host via Write Wiper
Control Register instruction; it may be written by
transferring the contents of one of four associated Data
Registers via the XFR Data Register instruction, it can be
modified one step at a time by the Increment/decrement
instruction (see Instruction section for more details).
Finally, it is loaded with the content of its data register zero
(DR0) upon power-up.
The Wiper Control Register is a volatile register that loses
its contents when the CAT5401 is powered-down. Although
the register is automatically loaded with the value in DR0
upon power-up, this may be different from the value present
at power-down.
Data Registers (DR)
Each potentiometer has four 6-bit non-volatile Data
Registers. These can be read or written directly by the host.
Data can also be transferred between any of the four Data
Registers and the associated Wiper Control Register. Any
data changes in one of the Data Registers is a non−volatile
operation and will take a maximum of 5 ms.
Write In Process
The contents of the Data Registers are saved to
nonvolatile memory when the CS input goes HIGH after a
write sequence is received. The status of the internal write
cycle can be monitored by issuing a Read Status command
to read the Write in Process (WIP) bit.
Instructions
Four of the nine instructions are three bytes in length.
These instructions are:
http://onsemi.com
8