English
Language : 

NSVD4001DR2G Datasheet, PDF (4/8 Pages) ON Semiconductor – High Current LED Driver
NUD4001, NSVD4001
APPLICATION INFORMATION
Design Guide
1. Define LED’s current:
a. ILED = 350 mA
2. Calculate Resistor Value for Rext:
a. Rext = Vsense (see Figure 2) / ILED
b. Rext = 0.7 (TJ = 25 °C)/ 0.350 = 2.0 W
3. Define Vin:
a. Per example in Figure 6, Vin = 12 V
4. Define VLED @ ILED per LED supplier’s data
sheet:
a. Per example in Figure 6,
VLED = 3.5 V + 3.5 V + 3.5 V = 10.5 V
Vin 1
Boost 2
Rext 3
GND
4
NUD4001
Current
Set Point
8 Iout
7 Iout
6 Iout
5 Iout
12 V
Figure 6. 12 V Application
(Series LED’s Array)
5. Calculate Vdrop across the NUD4001 device:
a. Vdrop = Vin – Vsense – VLED
b. Vdrop = 12 V – 0.7 V (TJ = 25 °C) – 10.5 V
c. Vdrop = 0.8 V
6. Calculate Power Dissipation on the NUD4001
device’s driver:
a. PD_driver = Vdrop * Iout
b. PD_driver = 0.8 V x 0.350 A
c. PD_driver = 0.280 Watts
7. Establish Power Dissipation on the NUD4001
device’s control circuit per Figure 4:
a. PD_control = Figure 4, for 12 V input voltage
b. PD_control = 0.055 W
8. Calculate Total Power Dissipation on the device:
a. PD_total = PD_driver + PD_control
b. PD_total = 0.280 W + 0.055 W = 0.335 W
9. If PD_total > 1.13 W (or derated value per
Figure 3), then select the most appropriate
recourse and repeat steps 1 through 8:
a. Reduce Vin
b. Reconfigure LED array to reduce Vdrop
c. Reduce Iout by increasing Rext
d. Use external resistors or parallel device’s
configuration (see application note AND8156)
10. Calculate the junction temperaure using the
thermal information on Page 7 and refer to Figure
5 to check the output current drop due to the
calculated junction temperature. If desired,
compensate it by adjusting the value of Rext.
http://onsemi.com
4