English
Language : 

LP3883 Datasheet, PDF (9/12 Pages) National Semiconductor (TI) – 3A Fast-Response Ultra Low Dropout Linear Regulators
Application Hints (Continued)
Fp = 1 / (2 X π X 5 X .047 X 10E-6) = 677 kHz
This pole would add close to 60 degrees of phase lag at the
crossover (unity gain) frequency of 1 MHz, which would
almost certainly make this regulator oscillate. Depending on
the load current, output voltage, and bandwidth, there are
usually values of small capacitors which can seriously re-
duce phase margin. If the capacitors are ceramic, they tend
to oscillate more easily because they have very little internal
inductance to damp it out. If bypass capacitors are used, it is
best to place them near the load and use trace inductance to
"decouple" them from the regulator output.
INPUT CAPACITOR
The input capacitor must be at least 4.7 µF, but can be
increased without limit. It’s purpose is to provide a low
source impedance for the regulator input. Ceramic capaci-
tors work best for this, but Tantalums are also very good.
There is no ESR limitation on the input capacitor (the lower,
the better). Aluminum electrolytics can be used, but their
ESR increase very quickly at cold temperatures. They are
not recommended for any application where temperatures
go below about 10˚C.
BIAS CAPACITOR
The 0.1µF capacitor on the bias line can be any good quality
capacitor (ceramic is recommended).
BIAS VOLTAGE
The bias voltage is an external voltage rail required to get
gate drive for the N-FET pass transistor. Bias voltage must
be in the range of 4.5 - 6V to assure proper operation of the
part.
UNDER VOLTAGE LOCKOUT
The bias voltage is monitored by a circuit which prevents the
regulator output from turning on if the bias voltage is below
approximately 4V.
SHUTDOWN OPERATION
Pulling down the shutdown (S/D) pin will turn-off the regula-
tor. Pin S/D must be actively terminated through a pull-up
resistor (10 kΩ to 100 kΩ) for a proper operation. If this pin
is driven from a source that actively pulls high and low (such
as a CMOS rail to rail comparator), the pull-up resistor is not
required. This pin must be tied to Vin if not used.
POWER DISSIPATION/HEATSINKING
A heatsink may be required depending on the maximum
power dissipation and maximum ambient temperature of the
application. Under all possible conditions, the junction tem-
perature must be within the range specified under operating
conditions. The total power dissipation of the device is given
by:
PD = (VIN−VOUT)IOUT+ (VIN)IGND
where IGND is the operating ground current of the device.
The maximum allowable temperature rise (TRmax) depends
on the maximum ambient temperature (TAmax) of the appli-
cation, and the maximum allowable junction temperature
(TJmax):
TRmax = TJmax− TAmax
The maximum allowable value for junction to ambient Ther-
mal Resistance, θJA, can be calculated using the formula:
θJA = TRmax / PD
These parts are available in TO-220 and TO-263 packages.
The thermal resistance depends on amount of copper area
or heat sink, and on air flow. If the maximum allowable value
of θJA calculated above is ≥ 60 ˚C/W for TO-220 package
and ≥ 60 ˚C/W for TO-263 package no heatsink is needed
since the package can dissipate enough heat to satisfy these
requirements. If the value for allowable θJA falls below these
limits, a heat sink is required.
HEATSINKING TO-220 PACKAGE
The thermal resistance of a TO220 package can be reduced
by attaching it to a heat sink or a copper plane on a PC
board. If a copper plane is to be used, the values of θJA will
be same as shown in next section for TO263 package.
The heatsink to be used in the application should have a
heatsink to ambient thermal resistance,
θHA≤ θJA − θCH − θJC.
In this equation, θCH is the thermal resistance from the case
to the surface of the heat sink and θJC is the thermal resis-
tance from the junction to the surface of the case. θJC is
about 3˚C/W for a TO220 package. The value for θCH de-
pends on method of attachment, insulator, etc. θCH varies
between 1.5˚C/W to 2.5˚C/W. If the exact value is unknown,
2˚C/W can be assumed.
HEATSINKING TO-263 PACKAGE
The TO-263 package uses the copper plane on the PCB as
a heatsink. The tab of these packages are soldered to the
copper plane for heat sinking. The graph below shows a
curve for the θJA of TO-263 package for different copper area
sizes, using a typical PCB with 1 ounce copper and no solder
mask over the copper area for heat sinking.
20062425
FIGURE 1. θJA vs Copper (1 Ounce) Area for TO-263
package
9
www.national.com