English
Language : 

LP3883 Datasheet, PDF (8/12 Pages) National Semiconductor (TI) – 3A Fast-Response Ultra Low Dropout Linear Regulators
Typical Performance
Characteristics Unless otherwise specified: TA =
25˚C, COUT = 4.7µF, Cin = 4.7µF, S/D pin is tied to VBIAS,
VIN = 2.2V, VOUT = 1.8V. (Continued)
VBIAS PSRR
20062421
Application Hints
VBIAS RESTRICTIONS FOR PROPER START-UP
To prevent misoperation, ensure that VBIAS is below 50mV
before start-up is initiated. This scenario can occur in sys-
tems with a backup battery using reverse-biased "blocking"
diodes which may allow enough leakage current to flow into
the VBIAS node to raise it’s voltage slightly above ground
when the main power is removed. Using low leakage diodes
or a resistive pull down can prevent the voltage at VBIAS from
rising above 50mV. Large bulk capacitors connected to
VBIAS may also cause a start-up problem if they do not
discharge fully before re-start is initiated (but only if VBIAS is
allowed to fall below 1V). A resistor connected across the
capacitor will allow it to discharge more quickly. It should be
noted that the probability of a "false start" caused by incor-
rect logic states is extremely low.
EXTERNAL CAPACITORS
To assure regulator stability, input and output capacitors are
required as shown in the Typical Application Circuit.
OUTPUT CAPACITOR
At least 4.7µF of output capacitance is required for stability
(the amount of capacitance can be increased without limit).
The output capacitor must be located less than 1 cm from
the output pin of the IC and returned to a clean analog
ground. The ESR (equivalent series resistance) of the output
capacitor must be within the "stable" range as shown in the
graph below over the full operating temperature range for
stable operation.
20062431
Minimum ESR vs Output Load Current
Tantalum capacitors are recommended for the output as
their ESR is ideally suited to the part’s requirements and the
ESR is very stable over temperature. Aluminum electrolytics
are not recommended because their ESR increases very
rapidly at temperatures below 10C. Aluminum caps can only
be used in applications where lower temperature operation
is not required.
A second problem with Al caps is that many have ESR’s
which are only specified at low frequencies. The typical loop
bandwidth of a linear regulator is a few hundred kHz to
several MHz. If an Al cap is used for the output cap, it must
be one whose ESR is specified at a frequency of 100 kHz or
more.
Because the ESR of ceramic capacitors is only a few milli
Ohms, they are not suitable for use as output capacitors on
LP388X devices. The regulator output can tolerate ceramic
capacitance totaling up to 15% of the amount of Tantalum
capacitance connected from the output to ground.
OUTPUT "BYPASS" CAPACITORS
Many designers place small value "bypass" capacitors at
various circuit points to reduce noise. Ceramic capacitors in
the value range of about 1000pF to 0.1µF placed directly on
the output of a PNP or P-FET LDO regulator can cause a
loss of phase margin which can result in oscillations, even
when a Tantalum output capacitor is in parallel with it. This is
not unique to National Semiconductor LDO regulators, it is
true of any P-type LDO regulator.
The reason for this is that PNP or P-FET regulators have a
higher output impedance (compared to an NPN regulator),
which results in a pole-zero pair being formed by every
different capacitor connected to the output.
The zero frequency is approximately:
Fz = 1 / (2 X π X ESR X C)
Where ESR is the equivalent series resistance of the capaci-
tor, and C is the value of capacitance.
The pole frequency is:
Fp = 1 / (2 X π X RL X C)
Where RL is the load resistance connected to the regulator
output.
To understand why a small capacitor can reduce phase
margin: assume a typical LDO with a bandwidth of 1MHz,
which is delivering 0.5A of current from a 2.5V output (which
means RL is 5 Ohms). We then place a .047 µF capacitor on
the output. This creates a pole whose frequency is:
www.national.com
8