English
Language : 

LP3881 Datasheet, PDF (8/12 Pages) National Semiconductor (TI) – 0.8A Fast-Response Ultra Low Dropout Linear Regulators
Application Hints
EXTERNAL CAPACITORS
To assure regulator stability, input and output capacitors are
required as shown in the Typical Application Circuit.
OUTPUT CAPACITOR
At least 4.7µF of output capacitance is required for stability
(the amount of capacitance can be increased without limit).
The output capacitor must be located less than 1 cm from
the output pin of the IC and returned to a clean analog
ground. The ESR (equivalent series resistance) of the output
capacitor must be within the "stable" range as shown in the
graph below over the full operating temperature range for
stable operation.
20063031
Minimum ESR vs Output Load Current
Tantalum capacitors are recommended for the output as
their ESR is ideally suited to the part’s requirements and the
ESR is very stable over temperature. Aluminum electrolytics
are not recommended because their ESR increases very
rapidly at temperatures below 10C. Aluminum caps can only
be used in applications where lower temperature operation
is not required.
A second problem with Al caps is that many have ESR’s
which are only specified at low frequencies. The typical loop
bandwidth of a linear regulator is a few hundred kHz to
several MHz. If an Al cap is used for the output cap, it must
be one whose ESR is specified at a frequency of 100 kHz or
more.
Because the ESR of ceramic capacitors is only a few milli
Ohms, they are not suitable for use as output capacitors on
LP388X devices. The regulator output can tolerate ceramic
capacitance totaling up to 15% of the amount of Tantalum
capacitance connected from the output to ground.
OUTPUT "BYPASS" CAPACITORS
Many designers place small value "bypass" capacitors at
various circuit points to reduce noise. Ceramic capacitors in
the value range of about 1000pF to 0.1µF placed directly on
the output of a PNP or P-FET LDO regulator can cause a
loss of phase margin which can result in oscillations, even
when a Tantalum output capacitor is in parallel with it. This is
not unique to National Semiconductor LDO regulators, it is
true of any P-type LDO regulator.
The reason for this is that PNP or P-FET regulators have a
higher output impedance (compared to an NPN regulator),
which results in a pole-zero pair being formed by every
different capacitor connected to the output.
The zero frequency is approximately:
Fz = 1 / (2 X π X ESR X C)
Where ESR is the equivalent series resistance of the capaci-
tor, and C is the value of capacitance.
The pole frequency is:
Fp = 1 / (2 X π X RL X C)
Where RL is the load resistance connected to the regulator
output.
To understand why a small capacitor can reduce phase
margin: assume a typical LDO with a bandwidth of 1MHz,
which is delivering 0.5A of current from a 2.5V output (which
means RL is 5 Ohms). We then place a .047 µF capacitor on
the output. This creates a pole whose frequency is:
Fp = 1 / (2 X π X 5 X .047 X 10E-6) = 677 kHz
This pole would add close to 60 degrees of phase lag at the
crossover (unity gain) frequency of 1 MHz, which would
almost certainly make this regulator oscillate. Depending on
the load current, output voltage, and bandwidth, there are
usually values of small capacitors which can seriously re-
duce phase margin. If the capacitors are ceramic, they tend
to oscillate more easily because they have very little internal
inductance to damp it out. If bypass capacitors are used, it is
best to place them near the load and use trace inductance to
"decouple" them from the regulator output.
INPUT CAPACITOR
The input capacitor must be at least 4.7 µF, but can be
increased without limit. It’s purpose is to provide a low
source impedance for the regulator input. Ceramic capaci-
tors work best for this, but Tantalums are also very good.
There is no ESR limitation on the input capacitor (the lower,
the better). Aluminum electrolytics can be used, but their
ESR increase very quickly at cold temperatures. They are
not recommended for any application where temperatures
go below about 10˚C.
BIAS CAPACITOR
The 0.1µF capacitor on the bias line can be any good quality
capacitor (ceramic is recommended).
BIAS VOLTAGE
The bias voltage is an external voltage rail required to get
gate drive for the N-FET pass transistor. Bias voltage must
be in the range of 4.5 - 6V to assure proper operation of the
part.
UNDER VOLTAGE LOCKOUT
The bias voltage is monitored by a circuit which prevents the
regulator output from turning on if the bias voltage is below
approximately 4V.
SHUTDOWN OPERATION
Pulling down the shutdown (S/D) pin will turn-off the regula-
tor. Pin S/D must be actively terminated through a pull-up
resistor (10 kΩ to 100 kΩ) for a proper operation. If this pin
is driven from a source that actively pulls high and low (such
as a CMOS rail to rail comparator), the pull-up resistor is not
required. This pin must be tied to Vin if not used.
www.national.com
8