English
Language : 

ADC12130 Datasheet, PDF (34/41 Pages) National Semiconductor (TI) – Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold
Application Hints (Continued)
creased to 18 or 34 CCLK periods. For less ADC accuracy
and/or slower CCLK frequencies the S/H’s acquisition time
may be decreased to 6 CCLK periods. To determine the
number of clock periods (Nc) required for the acquisition time
with a specific source impedance for the various resolutions
the following equations can be used:
12 Bit + Sign NC = [RS + 2.3] x fCK x 0.824
Where fCK is the conversion clock (CCLK) frequency in MHz
and RS is the external source resistance in kΩ. As an ex-
ample, operating with a resolution of 12 Bits+sign, a 5 MHz
clock frequency and maximum acquistion time of 34 conver-
sion clock periods the ADC’s analog inputs can handle a
source impedance as high as 6 kΩ. The acquisition time may
also be extended to compensate for the settling or response
time of external circuitry connected between the MUXOUT
and A/DIN pins.
The acquisition time tA is started by a falling edge of SCLK
and ended by a rising edge of CCLK (see timing diagrams).
If SCLK and CCLK are asynchronous one extra CCLK clock
period may be inserted into the programmed acquisition time
for synchronization. Therefore with asnychronous SCLK and
CCLKs the acquisition time will change from conversion to
conversion.
7.0 INPUT BYPASS CAPACITANCE
External capacitors (0.01 µF–0.1 µF) can be connected be-
tween the analog input pins, CH0–CH7, and analog ground
to filter any noise caused by inductive pickup associated with
long input leads. These capacitors will not degrade the con-
version accuracy.
8.0 NOISE
The leads to each of the analog multiplexer input pins should
be kept as short as possible. This will minimize input noise
and clock frequency coupling that can cause conversion er-
rors. Input filtering can be used to reduce the effects of the
noise sources.
9.0 POWER SUPPLIES
Noise spikes on the VA+ and VD+ supply lines can cause
conversion errors; the comparator will respond to the noise.
The ADC is especially sensitive to any power supply spikes
that occur during the auto-zero or linearity correction. The
minimum power supply bypassing capacitors recommended
are low inductance tantalum capacitors of 10 µF or greater
paralleled with 0.1 µF monolithic ceramic capacitors. More or
different bypassing may be necessary depending on the
overall system requirements. Separate bypass capacitors
should be used for the VA+ and VD+ supplies and placed as
close as possible to these pins.
10.0 GROUNDING
The ADC12130/2/8’s performance can be maximized
through proper grounding techniques. These include the use
of separate analog and digital ground planes. The digital
ground plane is placed under all components that handle
digital signals, while the analog ground plane is placed under
all components that handle analog signals. The digital and
analog ground planes are connected together at only one
point, either the power supply ground or at the pins of the
ADC. This greatly reduces the occurence of ground loops
and noise.
Shown in Figure 18 is the ideal ground plane layout for the
ADC12138 along with ideal placement of the bypass capaci-
tors. The circuit board layout shown in Figure 18 uses three
bypass capacitors: 0.01 µF (C1) and 0.1 µF (C2) surface
mount capacitors and 10 µF (C3) tantalum capacitor.
www.national.com
FIGURE 18. Ideal Ground Plane
34
DS012079-45