English
Language : 

LMH6611_14 Datasheet, PDF (29/42 Pages) National Semiconductor (TI) – LMH6611/LMH6612 Single Supply 345 MHz Rail-to-Rail Output Amplifiers
LMH6611, LMH6612
www.ti.com
SNOSB00K – NOVEMBER 2007 – REVISED OCTOBER 2013
DC LEVEL SHIFTING
Often a signal must be both amplified and level shifted while using a single supply for the op amp. The circuit in
Figure 74 can do both of these tasks. The procedure for specifying the resistor values is as follows.
1. Determine the input voltage.
2. Calculate the input voltage midpoint, VINMID = VINMIN + (VINMAX – VINMIN)/2.
3. Determine the output voltage needed.
4. Calculate the output voltage midpoint, VOUTMID = VOUTMIN + (VOUTMAX – VOUTMIN)/2.
5. Calculate the gain needed, gain = (VOUTMAX – VOUTMIN)/(VINMAX – VINMIN)
6. Calculate the amount the voltage needs to be shifted from input to output, ΔVOUT = VOUTMID – gain x VINMID.
7. Set the supply voltage to be used.
8. Calculate the noise gain, noise gain = gain + ΔVOUT/VS.
9. Set RF.
10. Calculate R1, R1 = RF/gain.
11. Calculate R2, R2 = RF/(noise gain-gain).
12. Calculate RG, RG= RF/(noise gain – 1).
Check that both the VIN and VOUT are within the voltage ranges of the LMH6611.
V+
V+
R1
VIN
R2
+
LMH6611
-
VOUT
RG
RF
Figure 74. DC Level Shifting
The following example is for a VIN of 0V to 1V with a VOUT of 2V to 4V.
1. VIN = 0V to 1V
2. VINMID = 0V + (1V – 0V)/2 = 0.5V
3. VOUT = 2V to 4V
4. VOUTMID = 2V + (4V – 2V)/2 = 3V
5. Gain = (4V – 2V)/(1V – 0V) = 2
6. ΔVOUT = 3V – 2 x 0.5V = 2
7. For the example the supply voltage will be +5V.
8. Noise gain = 2 + 2/5V = 2.4
9. RF = 2 kΩ
10. R1 = 2 kΩ/2 = 1 kΩ
11. R2 = 2 kΩ/(2.4-2) = 5 kΩ
12. RG = 2 kΩ/(2.4 – 1) = 1.43 kΩ
Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LMH6611 LMH6612
Submit Documentation Feedback
29