English
Language : 

MC74VHC574 Datasheet, PDF (3/7 Pages) Motorola, Inc – Octal D-Type Flip-Flop with 3-State Output
MC74VHC574
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ DC ELECTRICAL CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Symbol
Parameter
Test Conditions
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Iin
Maximum Input
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Leakage Current
Vin = 5.5V or GND
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ IOZ MaximumThree–State Vin = VIL or VIH
Leakage Current
Vout = VCC or GND
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ICC Maximum Quiescent Vin = VCC or GND
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Supply Current
VCC
V
0 to 5.5
TA = 25°C
Min
Typ
Max
± 0.1
5.5
± 0.25
5.5
4.0
TA = – 40 to 85°C
Min
Max Unit
± 1.0
µA
± 2.5
µA
40.0
µA
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 3.0ns)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Symbol
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ fmax
Parameter
Maximum Clock Frequency
(50% Duty Cycle)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ tPLH,
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ tPHL
Maximum Propagation Delay,
CP to Q
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ tPZL,
tPZH
Output Enable Time,
OE to Q
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ tPLZ,
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ tPHZ
Output Disable Time,
OE to Q
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ tOSLH, OutputtoOutputSkew
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ tOSHL
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Cin
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Cout
Maximum Input Capacitance
Maximum Three–State Output
Capacitance, Output in
High–Impedance State
Test Conditions
VCC = 3.3 ± 0.3V
VCC = 5.0 ± 0.5V
VCC = 3.3 ± 0.3
VCC = 5.0 ± 0.5V
VCC = 3.3 ± 0.3V
RL = 1kΩ
VCC = 5.0 ± 0.5V
RL = 1kΩ
VCC = 3.3 ± 0.3V
RL = 1kΩ
VCC = 5.0 ± 0.5V
RL = 1kΩ
VCC = 3.3 ± 0.3V
(Note 1.)
CL = 15pF
CL = 50pF
CL = 15pF
CL = 50pF
CL = 15pF
CL = 50pF
CL = 15pF
CL = 50pF
CL = 15pF
CL = 50pF
CL = 15pF
CL = 50pF
CL = 50pF
CL = 50pF
CL = 50pF
VCC = 5.0 ± 0.5V CL = 50pF
(Note 1.)
TA = 25°C
Min
Typ
Max
80
125
—
50
75
—
130
180
—
85
115
—
—
8.5
13.2
—
11.0
16.7
—
5.6
8.6
—
7.1
10.6
—
8.2
12.8
—
10.7
16.3
—
5.9
9.0
—
7.4
11.0
—
11.0
15.0
—
7.1
10.1
—
—
1.5
—
—
1.0
—
4
10
—
6
—
TA = – 40 to 85°C
Min
Max Unit
65
—
ns
45
—
110
—
75
—
1.0
15.5 ns
1.0
19.0
1.0
10.0
1.0
12.0
1.0
15.0 ns
1.0
18.5
1.0
10.5
1.0
12.5
1.0
17.0 ns
1.0
11.5
—
1.5
pF
—
1.0
—
10
pF
—
—
pF
Typical @ 25°C, VCC = 5.0V
CPD Power Dissipation Capacitance (Note 2.)
28
pF
1. Parameter guaranteed by design. tOSLH = |tPLHm – tPLHn|, tOSHL = |tPHLm – tPHLn|.
2. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation: ICC(OPR) = CPD  VCC  fin + ICC / 8 (per flip–flop). CPD is used to determine the
no–load dynamic power consumption; PD = CPD  VCC2  fin + ICC  VCC.
VHC Data – Advanced CMOS Logic
3
DL203 — Rev 1
MOTOROLA