English
Language : 

SST26VF032B Datasheet, PDF (8/77 Pages) Microchip Technology – 2.5V/3.0V 32 Mbit Serial Quad I/O (SQI) Flash Memory
SST26VF032B / SST26VF032BA
The Write Block-Protection Register command is a
two-cycle command which requires that Write-Enable
(WREN) is executed prior to the Write Block-Protection
Register command. The Global Block-Protection
Unlock command clears all write protection bits in the
Block-Protection register.
4.1.2
WRITE-PROTECTION LOCK-DOWN
(VOLATILE)
To prevent changes to the Block-Protection register,
use the Lock-Down Block-Protection Register (LBPR)
command to enable Write-Protection Lock-Down.
Once Write-Protection Lock-Down is enabled, the
Block-Protection register can not be changed. To avoid
inadvertent lock down, the WREN command must be
executed prior to the LBPR command.
To reset Write-Protection Lock-Down, performing a power
cycle on the device is required. The Write-Protection
Lock-Down status may be read from the Status register.
4.1.3
WRITE-LOCK LOCK-DOWN (NON-
VOLATILE)
The non-Volatile Write-Lock Lock-Down register is an
alternate register that permanently prevents changes
to the block-protect bits. The non-Volatile Write-Lock
Lock-Down register (nVWLDR) is 72 bits wide per
device: one bit each for the eight 8-KByte parameter
blocks, and one bit each for the remaining 32 KByte
and 64 KByte overlay blocks. See Table 5-6 for address
range protected per register bit.
Writing ‘1’ to any or all of the nVWLDR bits disables the
change mechanism for the corresponding Write-Lock
bit in the BPR, and permanently sets this bit to a ‘1’
(protected) state. After this change, both bits will be set
to ‘1’, regardless of the data entered in subsequent
writes to either the nVWLDR or the BPR. Subsequent
writes to the nVWLDR can only alter available locations
that have not been previously written to a ‘1’. This
method provides write-protection for the corresponding
memory-array block by protecting it from future pro-
gram or erase operations.
Writing a ‘0’ in any location in the nVWLDR has no
effect on either the nVWLDR or the corresponding
Write-Lock bit in the BPR.
Note that if the Block-Protection register had been pre-
viously locked down, see “Write-Protection Lock-Down
(Volatile)”, the device must be power cycled before
using the nVWLDR. If the Block-Protection register is
locked down and the Write nVWLDR command is
accessed, the command will be ignored.
4.2 Hardware Write Protection
The hardware Write Protection pin (WP#) is used in
conjunction with the WPEN and IOC bits in the config-
uration register to prohibit write operations to the Block-
Protection and Configuration registers. The WP# pin
function only works in SPI single-bit and dual-bit read
mode when the IOC bit in the configuration register is
set to ‘0’.
The WP# pin function is disabled when the WPEN bit
in the configuration register is ‘0’. This allows installa-
tion of the SST26VF032B/032BA in a system with a
grounded WP# pin while still enabling Write to the
Block-Protection register. The Lock-Down function of
the Block-Protection Register supersedes the WP# pin,
see Table 4-1 for Write Protection Lock-Down states.
The factory default setting at power-up of the WPEN bit
is ‘0’, disabling the Write Protect function of the WP#
after power-up. WPEN is a non-volatile bit; once the bit
is set to ‘1’, the Write Protect function of the WP# pin
continues to be enabled after power-up. The WP# pin
only protects the Block-Protection Register and Config-
uration Register from changes. Therefore, if the WP#
pin is set to low before or after a Program or Erase
command, or while an internal Write is in progress, it
will have no effect on the Write command.
The IOC bit takes priority over the WPEN bit in the con-
figuration register. When the IOC bit is ‘1’, the function
of the WP# pin is disabled and the WPEN bit serves no
function. When the IOC bit is ‘0’ and WPEN is ‘1’, set-
ting the WP# pin active low prohibits Write operations
to the Block Protection Register.
DS20005218E-page 8
 2013-2016 Microchip Technology Inc.