English
Language : 

MAX1062_09 Datasheet, PDF (10/18 Pages) Maxim Integrated Products – 14-Bit, +5V, 200ksps ADC with 10μA Shutdown
14-Bit, +5V, 200ksps ADC with 10µA Shutdown
COMPLETE CONVERSION SEQUENCE
CS
DOUT
CONVERSION 0
POWERED UP
POWERED DOWN
CONVERSION 1
POWERED UP
Figure 7. Shutdown Sequence
Output Coding and
Transfer Function
The data output from the MAX1062 is binary and Figure
8 depicts the nominal transfer function. Code transitions
occur halfway between successive-integer LSB values
(VREF = 4.096V and 1LSB = 250µV or 4.096V/16384).
Applications Information
External Reference
The MAX1062 requires an external reference with a
voltage range between 3.8V and AVDD. Connect the
external reference directly to REF. Bypass REF to
AGND (pin 3) with a 4.7µF capacitor. When not using a
low ESR bypass capacitor, use a 0.1µF ceramic capac-
itor in parallel with the 4.7µF capacitor. Noise on the
reference degrades conversion accuracy.
The input impedance at REF is 40kΩ for DC currents.
During a conversion the external reference at REF must
deliver 100µA of DC load current and have an output
impedance of 10Ω or less.
For optimal performance, buffer the reference through
an op amp and bypass the REF input. Consider the
MAX1062’s equivalent input noise (80µVRMS) when
choosing a reference.
Input Buffer
Most applications require an input buffer amplifier to
achieve 14-bit accuracy. If the input signal is multi-
plexed, switch the input channel immediately after acqui-
sition, rather than near the end of or after a conversion
(Figure 9). This allows the maximum time for the input
buffer amplifier to respond to a large step change in the
input signal. The input amplifier must have a slew rate of
at least 2V/µs to complete the required output voltage
change before the beginning of the acquisition time.
OUTPUT CODE
11 . . . 111
11 . . . 110
11 . . . 101
FULL-SCALE
TRANSITION
00 . . . 011
00 . . . 010
00 . . . 001
00 . . . 000
012 3
INPUT VOLTAGE (LSB)
FS = VREF
1LSB = VREF
16384
FS
FS - 3/2LSB
Figure 8. Unipolar Transfer Function, Full Scale (FS) = VREF,
Zero Scale (ZS) = GND
At the beginning of the acquisition, the internal sampling
capacitor array connects to AIN (the amplifier output),
causing some output disturbance. Ensure that the sam-
pled voltage has settled before the end of the acquisition
time.
Digital Noise
Digital noise can couple to AIN and REF. The conver-
sion clock (SCLK) and other digital signals active dur-
ing input acquisition contribute noise to the conversion
result. Noise signals synchronous with the sampling
interval result in an effective input offset. Asynchronous
signals produce random noise on the input, whose
10 ______________________________________________________________________________________