English
Language : 

LTC3850-1_15 Datasheet, PDF (27/38 Pages) Linear Technology – Dual, 2-Phase Synchronous Step-Down Switching Controller
LTC3850/LTC3850-1
APPLICATIONS INFORMATION
5. Is the INTVCC decoupling capacitor connected close
to the IC, between the INTVCC and the power ground
pins? This capacitor carries the MOSFET drivers current
peaks. An additional 1µF ceramic capacitor placed im-
mediately next to the INTVCC and PGND pins can help
improve noise performance substantially.
6. Keep the switching nodes (SW1, SW2), top gate nodes
(TG1, TG2), and boost nodes (BOOST1, BOOST2) away
from sensitive small-signal nodes, especially from the
opposite channel’s voltage and current sensing feed-
back pins. All of these nodes have very large and fast
moving signals and therefore should be kept on the
“output side” of the LTC3850 and occupy minimum
PC trace area. If DCR sensing is used, place the top
resistor (Figure 2b, R1) close to the switching node.
7. Use a modified “star ground” technique: a low imped-
ance, large copper area central grounding point on
the same side of the PC board as the input and output
capacitors with tie-ins for the bottom of the INTVCC
decoupling capacitor, the bottom of the voltage feedback
resistive divider and the SGND pin of the IC.
PC Board Layout Debugging
Start with one controller at a time. It is helpful to use a
DC-50MHz current probe to monitor the current in the
inductor while testing the circuit. Monitor the output
switching node (SW pin) to synchronize the oscilloscope to
the internal oscillator and probe the actual output voltage
as well. Check for proper performance over the operating
voltage and current range expected in the application.
The frequency of operation should be maintained over
the input voltage range down to dropout and until the
output load drops below the low current operation
threshold—typically 10% of the maximum designed cur-
rent level in Burst Mode operation.
The duty cycle percentage should be maintained from
cycle to cycle in a well-designed, low noise PCB imple-
mentation. Variation in the duty cycle at a subharmonic
rate can suggest noise pickup at the current or voltage
sensing inputs or inadequate loop compensation. Over-
compensation of the loop can be used to tame a poor PC
layout if regulator bandwidth optimization is not required.
Only after each controller is checked for its individual
performance should both controllers be turned on at the
same time. A particularly difficult region of operation is
when one controller channel is nearing its current com-
parator trip point when the other channel is turning on its
top MOSFET. This occurs around 50% duty cycle on either
channel due to the phasing of the internal clocks and may
cause minor duty cycle jitter.
Reduce VIN from its nominal level to verify operation
of the regulator in dropout. Check the operation of the
undervoltage lockout circuit by further lowering VIN while
monitoring the outputs to verify operation.
Investigate whether any problems exist only at higher out-
put currents or only at higher input voltages. If problems
coincide with high input voltages and low output currents,
look for capacitive coupling between the BOOST, SW, TG,
and possibly BG connections and the sensitive voltage
and current pins. The capacitor placed across the current
sensing pins needs to be placed immediately adjacent to
the pins of the IC. This capacitor helps to minimize the
effects of differential noise injection due to high frequency
capacitive coupling. If problems are encountered with
high current output loading at lower input voltages, look
for inductive coupling between CIN, Schottky and the top
MOSFET components to the sensitive current and voltage
sensing traces. In addition, investigate common ground
path voltage pickup between these components and the
SGND pin of the IC.
Design Example
As a design example for a two channel medium current regu-
lator, assume VIN = 12V(nominal), VIN = 20V(maximum),
VOUT1 = 3.3V, VOUT2 = 1.8V, IMAX1,2 = 5A, and f = 500kHz
(see Figure 14).
The regulated output voltages are determined by:
VOUT
=
0.8V
•


1+
RB
RA


Using 20k 1% resistors from both VFB nodes to ground,
the top feedback resistors are (to the nearest 1% standard
value) 63.4k and 25.5k.
The frequency is set by biasing the FREQ/PLLFLTR pin to
1.2V (see Figure 10), using a divider from INTVCC. This
38501fc
27