English
Language : 

LTC3868 Datasheet, PDF (22/38 Pages) Linear Technology – Low IQ, Dual 2-Phase Synchronous Step-Down Controller
LTC3868
Applications Information
The following list summarizes the four possible connec-
tions for EXTVCC:
1. EXTVCC Left Open (or Grounded). This will cause INTVCC
to be powered from the internal 5.1V regulator result-
ing in an efficiency penalty of up to 10% at high input
voltages.
2. EXTVCC Connected Directly to VOUT . This is the normal
connection for a 5V to 14V regulator and provides the
highest efficiency.
3. EXTVCC Connected to an External Supply. If an external
supply is available in the 5V to 14V range, it may be
used to power EXTVCC. Ensure that EXTVCC < VIN.
4. EXTVCC Connected to an Output-Derived Boost Network.
For 3.3V and other low voltage regulators, efficiency
gains can still be realized by connecting EXTVCC to an
output-derived voltage that has been boosted to greater
than 4.7V. This can be done with the capacitive charge
pump shown in Figure 8. Ensure that EXTVCC < VIN.
CIN
VIN
MTOP
TG1
1/2 LTC3868
EXTVCC
SW
MBOT
BG1
PGND
BAT85
BAT85
VN2222LL
L
RSENSE
D
BAT85
VOUT
COUT
3868 F08
Figure 8. Capacitive Charge Pump for EXTVCC
desired MOSFET. This enhances the top MOSFET switch
and turns it on. The switch node voltage, SW, rises to VIN
and the BOOST pin follows. With the topside MOSFET
on, the boost voltage is above the input supply: VBOOST =
VIN + VINTVCC. The value of the boost capacitor, CB, needs
to be 100 times that of the total input capacitance of the
topside MOSFET(s). The reverse breakdown of the external
Schottky diode must be greater than VIN(MAX).
When adjusting the gate drive level, the final arbiter is the
total input current for the regulator. If a change is made
and the input current decreases, then the efficiency has
improved. If there is no change in input current, then there
is no change in efficiency.
Fault Conditions: Current Limit and Current Foldback
When the output current hits the current limit, the output
voltage begins to drop. If the output voltage falls below
70% of its nominal output level, then the maximum sense
voltage is progressively lowered from about one-half of
its maximum selected value. Under short-circuit condi-
tions with very low duty cycles, the LTC3868 will begin
cycle skipping in order to limit the short-circuit current.
In this situation the bottom MOSFET will be dissipating
most of the power but less than in normal operation. The
short-circuit ripple current is determined by the minimum
on-time, tON(MIN), of the LTC3868 (≈95ns), the input volt-
age and inductor value:
ΔIL(SC)
=
tON(MIN)



VIN
L



The resulting average short-circuit current is:
ISC
=
50% • ILIM(MAX)
RSENSE
–
1
2
∆IL(SC)
Topside MOSFET Driver Supply (CB, DB)
External bootstrap capacitors, CB, connected to the BOOST
pins supply the gate drive voltages for the topside MOSFETs.
Capacitor CB in the Functional Diagram is charged though
external diode DB from INTVCC when the SW pin is low.
When one of the topside MOSFETs is to be turned on, the
driver places the CB voltage across the gate-source of the
22
Fault Conditions: Overvoltage Protection (Crowbar)
The overvoltage crowbar is designed to blow a system
input fuse when the output voltage of the regulator rises
much higher than nominal levels. The crowbar causes huge
currents to flow, that blow the fuse to protect against a
shorted top MOSFET if the short occurs while the control-
ler is operating.
3868fb