English
Language : 

LTC4000_15 Datasheet, PDF (20/40 Pages) Linear Technology – High Voltage High Current Controller for Battery Charging and Power Management
LTC4000
Applications Information
Similar to the input external PMOS, the charging external
PMOS must be able to withstand a gate to source voltage
greater than VBGATE(ON) (15V maximum) or the maximum
regulated voltage at the CSP pin, whichever is less. Consider
the expected maximum current, power dissipation and
instant-on voltage drop when selecting this PMOS. The
PMOS suggestions in Table 1 are an appropriate starting
point depending on the application.
Float Voltage, Output Voltage and Instant-On Voltage
Dependencies
The formulas for setting the float voltage, output voltage
and instant-on voltage are repeated here:
VFLOAT
=
RBFB1 + RBFB2
RBFB2
• 1.136V
VOUT
=
ROFB1 + ROFB2
ROFB2
• 1.193V
VOUT(INST _ ON)
=
ROFB1 + ROFB2
ROFB2
• 0.974V
In the typical application, VOUT is set higher than VFLOAT
to ensure that the battery is charged fully to its intended
float voltage. On the other hand, VOUT should not be
programmed too high since VOUT(INST_ON), the minimum
voltage on CSP, depends on the same resistors ROFB1 and
ROFB2 that set VOUT. As noted before, this means that the
output voltage regulation level is always 122.5% of the
instant-on voltage. The higher the programmed value of
VOUT(INST_ON), the larger the operating region when the
charger PMOS is driven in the linear region where it is
less efficient.
If ROFB1 and ROFB2 are set to be equal to RBFB1 and RBFB2
respectively, then the output voltage is set at 105% of
the float voltage and the instant-on voltage is set at 86%
of the float voltage. Figure 8 shows the range of possible
output voltages that can be set for VOUT(INST_ON) and VOUT
with respect to VFLOAT to ensure the battery can be fully
charged in an ideal scenario.
Taking into account possible mismatches between the
resistor dividers as well as mismatches in the various
regulation loops, VOUT should not be programmed to
be less than 105% of VFLOAT to ensure that the battery
can be fully charged. This automatically means that the
instant-on voltage level should not be programmed to be
less than 86% of VFLOAT.
NOMINAL OUTPUT VOLTAGE
NOMINAL FLOAT VOLTAGE 100%
POSSIBLE POSSIBLE
OUTPUT INSTANT-ON
VOLTAGE RANGE VOLTAGE RANGE
105%
100%
100%
MINIMUM PRACTICAL
OUTPUT VOLTAGE
86%
NOMINAL INSTANT-ON VOLTAGE
75%
MINIMUM PRACTICAL
INSTANT-ON VOLTAGE
81.6%
4000 F08
Figure 8. Possible Voltage Ranges for VOUT and
VOUT(INST_ON) in Ideal Scenario
20
For more information www.linear.com/LTC4000
4000fb