English
Language : 

LTC3850-2_15 Datasheet, PDF (19/36 Pages) Linear Technology – Dual, 2-Phase Synchronous Step-Down Switching Controller
LTC3850-2
APPLICATIONS INFORMATION
High input voltage applications in which large MOSFETs
are being driven at high frequencies may cause the maxi-
mum junction temperature rating for the LTC3850-2 to
be exceeded. The INTVCC current, which is dominated
by the gate charge current, may be supplied by either
the 5V linear regulator or EXTVCC. When the voltage on
the EXTVCC pin is less than 4.7V, the linear regulator is
enabled. Power dissipation for the IC in this case is high-
est and is equal to VIN • IINTVCC. The gate charge current
is dependent on operating frequency as discussed in the
Efficiency Considerations section. The junction tempera-
ture can be estimated by using the equations given in
Note 3 of the Electrical Characteristics. For example, the
LTC3850-2 INTVCC current is limited to less than 24mA
from a 24V supply in the GN package and not using the
EXTVCC supply:
TJ = 70°C + (24mA)(24V)(95°C/W) = 125°C
To prevent the maximum junction temperature from being
exceeded, the input supply current must be checked while
operating in continuous conduction mode (MODE/PLLIN
= SGND) at maximum VIN. When the voltage applied to
EXTVCC rises above 4.7V, the INTVCC linear regulator is
turned off and the EXTVCC is connected to the INTVCC.
The EXTVCC remains on as long as the voltage applied
to EXTVCC remains above 4.5V. Using the EXTVCC allows
the MOSFET driver and control power to be derived from
one of the LTC3850-2’s switching regulator outputs during
normal operation and from the INTVCC when the output
is out of regulation(e.g., start-up, short-circuit). If more
current is required through the EXTVCC than is specified,
an external Schottky diode can be added between the
EXTVCC and INTVCC pins. Do not apply more than 6V to
the EXTVCC pin and make sure that EXTVCC < VIN.
Significant efficiency and thermal gains can be realized by
powering INTVCC from the output, since the VIN current
resulting from the driver and control currents will be scaled
by a factor of (Duty Cycle)/(Switcher Efficiency).
Tying the EXTVCC pin to a 5V supply reduces the junction
temperature in the previous example from 125°C to:
TJ = 70°C + (24mA)(5V)(95°C/W) = 81°C
However, for 3.3V and other low voltage outputs, addi-
tional circuitry is required to derive INTVCC power from
the output.
The following list summarizes the four possible connec-
tions for EXTVCC:
1. EXTVCC left open (or grounded). This will cause
INTVCC to be powered from the internal 5V regulator
resulting in an efficiency penalty of up to 10% at high
input voltages.
2. EXTVCC connected directly to VOUT. This is the
normal connection for a 5V regulator and provides
the highest efficiency.
3. EXTVCC connected to an external supply. If a 5V
external supply is available, it may be used to power
EXTVCC providing it is compatible with the MOSFET
gate drive requirements.
4. EXTVCC connected to an output-derived boost net-
work. For 3.3V and other low voltage regulators,
efficiency gains can still be realized by connecting
EXTVCC to an output-derived voltage that has been
boosted to greater than 4.7V.
For applications where the main input power is 5V, tie
the VIN and INTVCC pins together and tie the combined
pins to the 5V input with a 1Ω or 2.2Ω resistor as shown
in Figure 8 to minimize the voltage drop caused by the
gate charge current. This will override the INTVCC linear
regulator and will prevent INTVCC from dropping too low
due to the dropout voltage. Make sure the INTVCC voltage
is at or exceeds the RDS(ON) test voltage for the MOSFET
which is typically 4.5V for logic level devices.
LTC3850-2 VIN
INTVCC
RVIN
5V
1Ω
CINTVCC
+
4.7μF
CIN
38502 F08
Figure 8. Setup for a 5V Input
38502f
19