English
Language : 

LTC2410_15 Datasheet, PDF (16/48 Pages) Linear Technology – 24-Bit No Latency ADC with Differential Input and Differential Reference
LTC2410
APPLICATIO S I FOR ATIO
Serial Clock Input/Output (SCK)
The serial clock signal present on SCK (Pin 13) is used to
synchronize the data transfer. Each bit of data is shifted out
the SDO pin on the falling edge of the serial clock.
In the Internal SCK mode of operation, the SCK pin is an
output and the LTC2410 creates its own serial clock by
dividing the internal conversion clock by 8. In the External
SCK mode of operation, the SCK pin is used as input. The
internal or external SCK mode is selected on power-up and
then reselected every time a HIGH-to-LOW transition is
detected at the CS pin. If SCK is HIGH or floating at power-
up or during this transition, the converter enters the inter-
nal SCK mode. If SCK is LOW at power-up or during this
transition, the converter enters the external SCK mode.
Serial Data Output (SDO)
The serial data output pin, SDO (Pin 12), provides the
result of the last conversion as a serial bit stream (MSB
first) during the data output state. In addition, the SDO pin
is used as an end of conversion indicator during the
conversion and sleep states.
When CS (Pin 11) is HIGH, the SDO driver is switched to
a high impedance state. This allows sharing the serial
interface with other devices. If CS is LOW during the
convert or sleep state, SDO will output EOC. If CS is LOW
during the conversion phase, the EOC bit appears HIGH on
the SDO pin. Once the conversion is complete, EOC goes
LOW. The device remains in the sleep state until the first
rising edge of SCK occurs while CS = LOW.
Chip Select Input (CS)
The active LOW chip select, CS (Pin 11), is used to test the
conversion status and to enable the data output transfer as
described in the previous sections.
In addition, the CS signal can be used to trigger a new
conversion cycle before the entire serial data transfer has
been completed. The LTC2410 will abort any serial data
transfer in progress and start a new conversion cycle
anytime a LOW-to-HIGH transition is detected at the CS
pin after the converter has entered the data output state
(i.e., after the first rising edge of SCK occurs with
CS␣ =␣ LOW).
Finally, CS can be used to control the free-running modes
of operation, see Serial Interface Timing Modes section.
Grounding CS will force the ADC to continuously convert
at the maximum output rate selected by FO. Tying a
capacitor to CS will reduce the output rate and power
dissipation by a factor proportional to the capacitor’s
value, see Figures 12 to 14.
SERIAL INTERFACE TIMING MODES
The LTC2410’s 3-wire interface is SPI and MICROWIRE
compatible. This interface offers several flexible modes of
operation. These include internal/external serial clock,
2- or 3-wire I/O, single cycle conversion and autostart. The
following sections describe each of these serial interface
timing modes in detail. In all these cases, the converter
can use the internal oscillator (FO = LOW or FO = HIGH) or
an external oscillator connected to the FO pin. Refer to
Table␣ 4 for a summary.
External Serial Clock, Single Cycle Operation
(SPI/MICROWIRE Compatible)
This timing mode uses an external serial clock to shift out
the conversion result and a CS signal to monitor and
control the state of the conversion cycle, see Figure 5.
Table 4. LTC2410 Interface Timing Modes
Configuration
External SCK, Single Cycle Conversion
External SCK, 2-Wire I/O
Internal SCK, Single Cycle Conversion
Internal SCK, 2-Wire I/O, Continuous Conversion
Internal SCK, Autostart Conversion
SCK
Source
External
External
Internal
Internal
Internal
Conversion
Cycle
Control
CS and SCK
SCK
CS ↓
Continuous
CEXT
Data
Output
Control
CS and SCK
SCK
CS ↓
Internal
Internal
Connection
and
Waveforms
Figures 5, 6
Figure 7
Figures 8, 9
Figure 10
Figure 11
16