English
Language : 

LTC4006_15 Datasheet, PDF (11/20 Pages) Linear Technology – 4A, High Efficiency, Standalone Li-Ion Battery Charger
U
OPERATIO
be inhibited if it is not already active. If the charging current
decreases below 10% to 15% of programmed current,
while engaged in input current limiting, BGATE will be
forced low to prevent the charger from discharging the
battery. Audible noise can occur in this mode of operation.
An overvoltage comparator guards against voltage tran-
sient overshoots (>7% of programmed value). In this
case, both MOSFETs are turned off until the overvoltage
condition is cleared. This feature is useful for batteries
which “load dump” themselves by opening their protec-
tion switch to perform functions such as calibration or
pulse mode charging.
As the voltage at BAT increases to near the input voltage
at DCIN, the converter will attempt to turn on the top
MOSFET continuously (“dropout’’). A watchdog timer
detects this condition and forces the top MOSFET to turn
off for about 300ns at 40µs intervals. This is done to
prevent audible noise when using ceramic capacitors at
the input and output.
Charger Startup
When the charger is enabled, it will not begin switching
until the ITH voltage exceeds a threshold that assures initial
current will be positive. This threshold is 5% to 15% of the
maximum programmed current. After the charger begins
switching, the various loops will control the current at a
level that is higher or lower than the initial current. The
duration of this transient condition depends upon the loop
compensation but is typically less than 100µs.
Thermistor Detection
The thermistor detection circuit is shown in Figure 3. It requires
an external resistor and capacitor in order to function properly.
The thermistor detector performs a sample-and-hold func-
tion. An internal clock, whose frequency is determined by
the timing resistor connected to RT, keeps switch S1
closed to sample the thermistor:
tSAMPLE = 127.5 • 20 • RRT • 17.5pF = 13.8ms,
for RRT = 309k
The external RC network is driven to approximately 4.5V
and settles to a final value across the thermistor of:
VRTH(FINAL)
=
4.5V
RTH
• RTH
+ R9
LTC4006
LTC4006
R9
32.4k NTC
6
RTH
10k
NTC
C7
S1
0.47µF
CLK
~4.5V
60k
45k
DQ
C
Figure 3
15k
TBAD
4006 F03
This voltage is stored by C7. Then the switch is opened for a
short period of time to read the voltage across the thermistor.
tHOLD = 10 • RRT • 17.5pF = 54µs,
for RRT = 309k
When the tHOLD interval ends the result of the thermistor
testing is stored in the D flip-flop (DFF). If the voltage at
NTC is within the limits provided by the resistor divider
feeding the comparators, then the NOR gate output will be
low and the DFF will set TBAD to zero and charging will
continue. If the voltage at NTC is outside of the resistor
divider limits, then the DFF will set TBAD to one, the charger
will be shut down, and the timer will be suspended until
TBAD returns to zero (see Figure 4).
CLK
(NOT TO
SCALE)
tSAMPLE
tHOLD
VOLTAGE ACROSS THERMISTOR
VNTC
COMPARATOR HIGH LIMIT
COMPARATOR LOW LIMIT
4006 F04
Figure 4
4006fa
11