English
Language : 

LTC3850-1_15 Datasheet, PDF (20/38 Pages) Linear Technology – Dual, 2-Phase Synchronous Step-Down Switching Controller
LTC3850/LTC3850-1
APPLICATIONS INFORMATION
exceeded. The INTVCC current, which is dominated by the
gate charge current, may be supplied by either the 5V linear
regulator or EXTVCC. When the voltage on the EXTVCC pin
is less than 4.7V, the linear regulator is enabled. Power
dissipation for the IC in this case is highest and is equal
to VIN • IINTVCC. The gate charge current is dependent
on operating frequency as discussed in the Efficiency
Considerations section. The junction temperature can be
estimated by using the equations given in Note 3 of the
Electrical Characteristics. For example, the LTC3850 INTVCC
current is limited to less than 24mA from a 24V supply in
the GN package and not using the EXTVCC supply:
TJ = 70°C + (24mA)(24V)(95°C/W) = 125°C
To prevent the maximum junction temperature from being
exceeded, the input supply current must be checked while
operating in continuous conduction mode (MODE/PLLIN =
SGND) at maximum VIN. When the voltage applied to EXTVCC
rises above 4.7V, the INTVCC linear regulator is turned off
and the EXTVCC is connected to the INTVCC. The EXTVCC
remains on as long as the voltage applied to EXTVCC remains
above 4.5V. Using the EXTVCC allows the MOSFET driver
and control power to be derived from one of the LTC3850’s
switching regulator outputs during normal operation and
from the INTVCC when the output is out of regulation
(e.g., start-up, short-circuit). If more current is required
through the EXTVCC than is specified, an external Schottky
diode can be added between the EXTVCC and INTVCC pins.
Do not apply more than 6V to the EXTVCC pin and make
sure that EXTVCC < VIN.
Significant efficiency and thermal gains can be realized by
powering INTVCC from the output, since the VIN current
resulting from the driver and control currents will be scaled
by a factor of (Duty Cycle)/(Switcher Efficiency).
Tying the EXTVCC pin to a 5V supply reduces the junction
temperature in the previous example from 125°C to:
TJ = 70°C + (24mA)(5V)(95°C/W) = 81°C
However, for 3.3V and other low voltage outputs, addi-
tional circuitry is required to derive INTVCC power from
the output.
The following list summarizes the four possible connec-
tions for EXTVCC:
20
1. EXTVCC left open (or grounded). This will cause
INTVCC to be powered from the internal 5V regulator
resulting in an efficiency penalty of up to 10% at high
input voltages.
2. EXTVCC connected directly to VOUT. This is the
normal connection for a 5V regulator and provides
the highest efficiency.
3. EXTVCC connected to an external supply. If a 5V
external supply is available, it may be used to power
EXTVCC providing it is compatible with the MOSFET
gate drive requirements.
4. EXTVCC connected to an output-derived boost net-
work. For 3.3V and other low voltage regulators,
efficiency gains can still be realized by connecting
EXTVCC to an output-derived voltage that has been
boosted to greater than 4.7V.
For applications where the main input power is 5V, tie
the VIN and INTVCC pins together and tie the combined
pins to the 5V input with a 1Ω or 2.2Ω resistor as shown
in Figure 8 to minimize the voltage drop caused by the
gate charge current. This will override the INTVCC linear
regulator and will prevent INTVCC from dropping too low
due to the dropout voltage. Make sure the INTVCC voltage
is at or exceeds the RDS(ON) test voltage for the MOSFET
which is typically 4.5V for logic level devices.
LTC3850 VIN
INTVCC
RVIN
5V
CINTVCC
1Ω
+
4.7µF
CIN
38501 F08
Figure 8. Setup for a 5V Input
Topside MOSFET Driver Supply (CB, DB)
External bootstrap capacitors CB connected to the BOOST
pins supply the gate drive voltages for the topside MOSFETs.
Capacitor CB in the Functional Diagram is charged though
external diode DB from INTVCC when the SW pin is low.
When one of the topside MOSFETs is to be turned on,
the driver places the CB voltage across the gate source
of the desired MOSFET. This enhances the MOSFET and
38501fc