English
Language : 

EEV107M035A9HAA Datasheet, PDF (10/16 Pages) Kemet Corporation – Surface Mount Aluminum Electrolytic Capacitors EEV Series, +105ºC
Surface Mount Aluminum Electrolytic Capacitors – EEV Series, +105ºC
The relationship between the leakage current and voltage applied at constant temperature can be shown schematically as follows:
I
VR VS
VF
V
Where:
VF = Forming voltage
If this level is exceeded, a large quantity of heat and gas will be generated and the capacitor could be damaged.
VR = Rated voltage
This level represents the top of the linear part of the curve.
VS = Surge voltage
This lies between VR and VF. The capacitor can be subjected to VS for short periods only.
Electrolytic capacitors are subjected to a reforming process before acceptance testing. The purpose of this preconditioning is to ensure
that the same initial conditions are maintained when comparing different products.
Ripple Current (RC)
The maximum ripple current value depends on:
• Ambient temperature
• Surface area of the capacitor (heat dissipation area)
tan δ or ESR
• Frequency
The capacitor’s life depends on the thermal stress.
Frequency Dependence of the Ripple Current
ESR and, thus, the tan δ depend on the frequency of the applied voltage. This indicates that the allowed ripple current is also a function
of the frequency.
Temperature Dependence of the Ripple Current
The data sheet specifies maximum ripple current at the upper category temperature for each capacitor.
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com
A4002_EEV • 2/21/2014 10