English
Language : 

IS61LF25636A_10 Datasheet, PDF (1/32 Pages) Integrated Silicon Solution, Inc – 256K x 36, 512K x 18 9 Mb SYNCHRONOUS FLOW-THROUGH STATIC RAM
IS61LF25636A IS61VF25636Ais64lf25636a
IS61LF51218AIS61VF51218A
256K x 36, 512K x 18 
9 Mb SYNCHRONOUS FLOW-THROUGH
STATIC RAM
SEPTEMBER 2010
FEATURES
• Internal self-timed write cycle
• Individual Byte Write Control and Global Write
• Clock controlled, registered address, data and
control
• Burst sequence control using MODE input
• Three chip enable option for simple depth expan-
sion and address pipelining
• Common data inputs and data outputs
• Auto Power-down during deselect
• Single cycle deselect
• Snooze MODE for reduced-power standby
• JTAG Boundary Scan for PBGA package
• Power Supply
LF: Vdd 3.3V + 5%, Vddq 3.3V/2.5V + 5%
VF: Vdd 2.5V + 5%, Vddq 2.5V + 5%
• JEDEC 100-Pin TQFP, 119-pin PBGA, and 165-
pin PBGA packages
• Lead-free available
• Automotive temperature available
FAST ACCESS TIME
Symbol
Parameter
tkq
Clock Access Time
tkc
Cycle Time
Frequency
DESCRIPTION
The  ISSI  IS61LF/VF25636A, IS64LF25636A and IS61LF/
VF51218A are high-speed, low-power synchronous
static RAMs designed to provide burstable, high-performance
memory for communication and networking applications.
The IS61LF/VF25636A and IS64LF25636A are organized
as 262,144 words by 36 bits. The IS61LF/VF51218A is
organized as 524,288 words by 18 bits. Fabricated with
ISSI's advanced CMOS technology, the device integrates
a 2-bit burst counter, high-speed SRAM core, and high-
drive capability outputs into a single monolithic circuit. All
synchronous inputs pass through registers controlled by
a positive-edge-triggered single clock input.
Write cycles are internally self-timed and are initiated by the
rising edge of the clock input. Write cycles can be one to
four bytes wide as controlled by the write control inputs.
Separate byte enables allow individual bytes to be written.
Byte write operation is performed by using byte write en-
able (BWE) input combined with one or more individual
byte write signals (BWx). In addition, Global Write (GW)
is available for writing all bytes at one time, regardless of
the byte write controls.
Bursts can be initiated with either ADSP (Address Status
Processor) or ADSC (Address Status Cache Controller)
input pins. Subsequent burst addresses can be gener-
ated internally and controlled by the ADV (burst address
advance) input pin.
The mode pin is used to select the burst sequence order,
Linear burst is achieved when this pin is tied LOW. Inter-
leave burst is achieved when this pin is tied HIGH or left
floating.
-6.5
-7.5
6.5
7.5
7.5
8.5
133
117
Units
ns
ns
MHz
Copyright © 2010 Integrated Silicon Solution, Inc.All rights reserved.ISSI reserves the right to make changes to this specification and its products at any time without
notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the lat-
est version of this device specification before relying on any published information and before placing orders for products.
Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reason-
ably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications
unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:
a.) the risk of injury or damage has been minimized;
b.) the user assume all such risks; and
c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances
Integrated Silicon Solution, Inc.
1
Rev.  H
07/22/2010