English
Language : 

ISL6608 Datasheet, PDF (9/11 Pages) Intersil Corporation – Synchronous Rectified MOSFET Driver
ISL6608
Power Dissipation
Package power dissipation is mainly a function of the
switching frequency and total gate charge of the selected
MOSFETs. Calculating the power dissipation in the driver for
a desired application is critical to ensuring safe operation.
Exceeding the maximum allowable power dissipation level
will push the IC beyond the maximum recommended
operating junction temperature of 125°C. The maximum
allowable IC power dissipation for the SO-8 package is
approximately 800mW. When designing the driver into an
application, it is recommended that the following calculation
be performed to ensure safe operation at the desired
frequency for the selected MOSFETs. The power dissipated
by the driver is approximated as below and plotted as in
Figure 9.
P = fsw(1.5VUQU + VLQL) + IDDQVCC
where fsw is the switching frequency of the PWM signal. VU
and VL represent the upper and lower gate rail voltage. QU
and QL are the upper and lower gate charge determined by
MOSFET selection and any external capacitance added to
the gate pins. The IDDQ VCC product is the quiescent power
of the driver and is typically negligible.
Layout Consideration
For heat spreading, place copper underneath the IC whether
it has an exposed pad or not. The copper area can be
extended beyond the bottom area of the IC and/or
connected to buried copper plane(s) with thermal vias. This
combination of vias for vertical heat escape, extended
copper plane, and buried planes for heat spreading allows
the IC to achieve its full thermal potential.
Place each channel power component as close to each
other as possible to reduce PCB copper losses and PCB
parasitics: shortest distance between DRAINs of upper FETs
and SOURCEs of lower FETs; shortest distance between
DRAINs of lower FETs and the power ground. Thus, smaller
amplitudes of positive and negative ringing are on the
switching edges of the PHASE node. However, some space
in between power components is required for good airflow.
The gate traces from the drivers to the FETs should be kept
short and wide to reduce the inductance of the traces and
promote clean drive signals.
1000
900
800
QU=100nC
QL=200nC
QU=50nC
QL=100nC
QU=50nC
QL=50nC
700
600
QU=20nC
QL=50nC
500
400
300
200
100
0
0 200 400 600 800 1000 1200 1400 1600 1800 2000
FREQUENCY (kHz)
FIGURE 9. POWER DISSIPATION vs FREQUENCY
9