English
Language : 

ISL6594D_14 Datasheet, PDF (8/11 Pages) Intersil Corporation – Advanced Synchronous Rectified Buck MOSFET Drivers with Protection Features
ISL6594D
improvement suggestions. When designing the driver into an
application, it is recommended that the following calculations
are used to ensure safe operation at the desired frequency for
the selected MOSFETs. The total gate drive power losses due
to the gate charge of MOSFETs and the driver’s internal
circuitry and their corresponding average driver current can
be estimated with Equations 2 and 3, respectively:
PQg_TOT = PQg_Q1 + PQg_Q2 + IQ • VCC
P Q g _Q1
=
Q-----G-----1----•-----P----V----C-----C-----2-
VGS1
•
fSW
•
NQ1
P Q g _Q2
=
Q-----G-----2----•-----P----V-----C----C-----2-
VGS2
•
fS
W
•
NQ
2
(EQ. 2)
IDR
=
⎛
⎜
⎝
Q-----G-----1----•-----P----V-----C----C------•----N-----Q----1--
VGS1
+
Q-----G-----2----•-----P-V---V-G---C-S----C2------•----N-----Q----2--⎠⎟⎞
• fSW + IQ
(EQ. 3)
where the gate charge (QG1 and QG2) is defined at a
particular gate to source voltage (VGS1and VGS2) in the
corresponding MOSFET datasheet; IQ is the driver’s total
quiescent current with no load at both drive outputs; NQ1
and NQ2 are number of upper and lower MOSFETs,
respectively; PVCC is the drive voltage for both upper and
lower FETs. The IQ*VCC product is the quiescent power of
the driver without capacitive load and is typically 116mW at
300kHz and VCC = PVCC = 12V.
The total gate drive power losses are dissipated among the
resistive components along the transition path. The drive
resistance dissipates a portion of the total gate drive power
losses, the rest will be dissipated by the external gate
resistors (RG1 and RG2) and the internal gate resistors
(RGI1 and RGI2) of MOSFETs. Figures 3 and 4 show the
typical upper and lower gate drives turn-on transition path.
The power dissipation on the driver can be roughly
estimated as:
PDR = PDR_UP + PDR_LOW + IQ • VCC
(EQ. 4)
P D R _UP
=
⎛
⎜
⎝
-------------R-----H----I--1--------------
RHI1 + REXT1
+
R-----L---O-----1R----+-L---O-R----1-E----X----T---1- ⎠⎟⎞
•
P-----Q----g----_--Q-----1-
2
P D R _LOW
=
⎛
⎜
⎝
-------------R-----H----I--2--------------
RHI2 + REXT2
+
R-----L---O-----2R----+-L---O-R----2-E----X----T---2- ⎠⎟⎞
•
P-----Q----g----_--Q-----2-
2
REXT1
=
RG
1
+
R-----G-----I-1--
NQ1
REXT2
=
RG2
+
R-----G-----I-2--
NQ2
PVCC
BOOT
RHI1
RLO1
PHASE
CGD
G
RG1
RGI1
CGS
S
D
CDS
Q1
FIGURE 3. TYPICAL UPPER-GATE DRIVE TURN-ON PATH
PVCC
RHI2
RLO2
CGD
G
RG2
RGI2
CGS
S
D
CDS
Q2
FIGURE 4. TYPICAL LOWER-GATE DRIVE TURN-ON PATH
Application Information
Layout Considerations
The parasitic inductances of the PCB and of the power
devices’ packaging (both upper and lower MOSFETs) can
cause serious ringing, exceeding absolute maximum rating
of the devices. Careful layout can help minimize such
unwanted stress. The following advice is meant to lead to an
optimized layout:
• Keep decoupling loops (PVCC-GND and BOOT-PHASE)
as short as possible.
• Minimize trace inductance, especially on low-impedance
lines. All power traces (UGATE, PHASE, LGATE, GND,
PVCC) should be short and wide, as much as possible.
• Minimize the inductance of the PHASE node. Ideally, the
source of the upper and the drain of the lower MOSFET
should be as close as thermally allowable.
• Minimize the current loop of the output and input power
trains. Short the source connection of the lower MOSFET
to ground as close to the transistor pin as feasible. Input
capacitors (especially ceramic decoupling) should be
placed as close to the drain of upper and source of lower
MOSFETs as possible.
In addition, for heat spreading, place copper underneath the
IC whether it has an exposed pad or not. The copper area
can be extended beyond the bottom area of the IC and/or
connected to buried power ground plane(s) with thermal
8
FN9282.1
December 3, 2007