English
Language : 

HA5022_03 Datasheet, PDF (7/17 Pages) Intersil Corporation – Dual, 125MHz, Video Current Feedback Amplifier with Disable
HA5022
Application Information
Optimum Feedback Resistor
The plots of inverting and non-inverting frequency response,
see Figure 11 and Figure 12 in the Typical Performance
Curves section, illustrate the performance of the HA5022 in
various closed loop gain configurations. Although the
bandwidth dependency on closed loop gain isn’t as severe
as that of a voltage feedback amplifier, there can be an
appreciable decrease in bandwidth at higher gains. This
decrease may be minimized by taking advantage of the
current feedback amplifier’s unique relationship between
bandwidth and RF . All current feedback amplifiers require a
feedback resistor, even for unity gain applications, and RF,
in conjunction with the internal compensation capacitor, sets
the dominant pole of the frequency response. Thus, the
amplifier’s bandwidth is inversely proportional to RF. The
HA5022 design is optimized for a 1000Ω RF at a gain of +1.
Decreasing RF in a unity gain application decreases stability,
resulting in excessive peaking and overshoot. At higher
gains the amplifier is more stable, so RF can be decreased
in a trade-off of stability for bandwidth.
The table below lists recommended RF values for various
gains, and the expected bandwidth.
GAIN
(ACL)
-1
+1
+2
+5
+10
-10
RF (Ω)
750
1000
681
1000
383
750
BANDWIDTH
(MHz)
100
125
95
52
65
22
PC Board Layout
The frequency response of this amplifier depends greatly on
the amount of care taken in designing the PC board. The
use of low inductance components such as chip resistors
and chip capacitors is strongly recommended. If leaded
components are used the leads must be kept short
especially for the power supply decoupling components and
those components connected to the inverting input.
Attention must be given to decoupling the power supplies. A
large value (10µF) tantalum or electrolytic capacitor in
parallel with a small value (0.1µF) chip capacitor works well
in most cases.
A ground plane is strongly recommended to control noise.
Care must also be taken to minimize the capacitance to
ground seen by the amplifier’s inverting input (-IN). The
larger this capacitance, the worse the gain peaking, resulting
in pulse overshoot and possible instability. It is
recommended that the ground plane be removed under
traces connected to -IN, and that connections to -IN be kept
as short as possible to minimize the capacitance from this
node to ground.
Driving Capacitive Loads
Capacitive loads will degrade the amplifier’s phase margin
resulting in frequency response peaking and possible
oscillations. In most cases the oscillation can be avoided by
placing an isolation resistor (R) in series with the output as
shown in Figure 6.
100Ω
VIN
R
+-
VOUT
RT
CL
RF
RI
FIGURE 6. PLACEMENT OF THE OUTPUT ISOLATION
RESISTOR, R
The selection criteria for the isolation resistor is highly
dependent on the load, but 27Ω has been determined to be
a good starting value.
Power Dissipation Considerations
Due to the high supply current inherent in dual amplifiers,
care must be taken to insure that the maximum junction
temperature (TJ, see Absolute Maximum Ratings) is not
exceeded. Figure 7 shows the maximum ambient
temperature versus supply voltage for the available package
styles (PDIP, SOIC). At VS = ±5V quiescent operation both
package styles may be operated over the full industrial
range of -40oC to 85oC. It is recommended that thermal
calculations, which take into account output power, be
performed by the designer.
140
130
PDIP
120
110
100
90
SOIC
80
5
7
9
11
13
15
SUPPLY VOLTAGE (±V)
FIGURE 7. MAXIMUM OPERATING AMBIENT
TEMPERATURE vs SUPPLY VOLTAGE
Enable/Disable Function
When enabled the amplifier functions as a normal current
feedback amplifier with all of the data in the electrical
specifications table being valid and applicable. When
7