English
Language : 

ICE2QR1765Z Datasheet, PDF (8/22 Pages) Infineon Technologies AG – Off-Line SMPS Quasi-Resonant PWM Controller with integrated 650V CoolMOS® and startup cell in DIP-7
CoolSET® - Q1
ICE2QR1765Z
Functional Description
3.3.1.1 Up/down counter
The up/down counter stores the number of the zero
crossing where the main power switch is switched on
after demagnetisation of the transformer. This value is
fixed according to the feedback voltage, VFB, which
contains information about the output power. Indeed, in
a typical peak current mode control, a high output
power results in a high feedback voltage, and a low
output power leads to a low regulation voltage. Hence,
according to VFB, the value in the up/down counter is
changed to vary the power MOSFET off-time according
to the output power. In the following, the variation of the
up/down counter value according to the feedback
voltage is explained.
The feedback voltage VFB is internally compared with
three threshold voltages VFBZL, VFBZH and VFBR1, at
each clock period of 48ms. The up/down counter
counts then upward, keep unchanged or count
downward, as shown in Table 1.
Table 1 Operation of the up/down counter
vFB
Always lower than VFBZL
Once higher than VFBZL, but
always lower than VFBZH
Once higher than VFBZH, but
always lower than VFBR1
Once higher than VFBR1
up/down counter
action
Count upwards till
7
Stop counting, no
value changing
Count downwards
till 1
Set up/down
counter to 1
In the ICE2QR1765Z, the number of zero crossing is
limited to 7. Therefore, the counter varies between 1
and 7, and any attempt beyond this range is ignored.
When VFB exceeds VFBR1 voltage, the up/down counter
is reset to 1, in order to allow the system to react rapidly
to a sudden load increase. The up/down counter value
is also reset to 1 at the start-up time, to ensure an
efficient maximum load start up. Figure 5 shows some
examples on how up/down counter is changed
according to the feedback voltage over time.
The use of two different thresholds VFBZL and VFBZH to
count upward or downward is to prevent frequency
jittering when the feedback voltage is close to the
threshold point. However, for a stable operation, these
two thresholds must not be affected by the foldback
current limitation (see Section 3.4.1), which limits the
VCS voltage. Hence, to prevent such situation, the
threshold voltages, VFBZL and VFBZH, are changed
internally depending on the line voltage levels.
clock
T=48ms
t
VFB
VFBR1
VFBZH
VFBZL
Up/down
counter
t
1
Case 1 4 5 6 6 6 6 5 4 3 1
Case 2 2 3 4 4 4 4 3 2 1 1
Case 3 7 7 7 7 7 7 6 5 4 1
Figure 5 Up/down counter operation
3.3.1.2 Zero crossing (ZC counter)
In the system, the voltage from the auxiliary winding is
applied to the zero-crossing pin through a RC network,
which provides a time delay to the voltage from the
auxiliary winding. Internally, this pin is connected to a
clamping network, a zero-crossing detector, an output
overvoltage detector and a ringing suppression time
controller.
During on-state of the power switch a negative voltage
applies to the ZC pin. Through the internal clamping
network, the voltage at the pin is clamped to certain
level.
The ZC counter has a minimum value of 0 and
maximum value of 7. After the internal MOSFET is
turned off, every time when the falling voltage ramp of
on ZC pin crosses the 100mV threshold, a zero
crossing is detected and ZC counter will increase by 1.
It is reset every time after the DRIVER output is
changed to high.
The voltage vZC is also used for the output overvoltage
detection. Once the voltage at this pin is higher than the
threshold VZCOVP during off-time of the main switch, the
IC is latched off after a fixed blanking time.
To achieve the switch-on at voltage valley, the voltage
from the auxiliary winding is fed to a time delay network
(the RC network consists of Dzc, Rzc1, Rzc2 and Czc as
shown in typical application circuit) before it is applied
to the zero-crossing detector through the ZC pin. The
needed time delay to the main oscillation signal Dt
should be approximately one fourth of the oscillation
period (by transformer primary inductance and drain-
source capacitance) minus the propagation delay from
Version 2.1
8
August 30, 2011