English
Language : 

AT25DN011 Datasheet, PDF (2/42 Pages) List of Unclassifed Manufacturers – 1-Mbit, 2.3V Minimum SPI Serial Flash Memory with Dual-Read Support
1. Description
The Adesto® AT25DN011 is a serial interface Flash memory device designed for use in a wide variety of high-volume consumer
based applications in which program code is shadowed from Flash memory into embedded or external RAM for execution. The
flexible erase architecture of the AT25DN011, with its page erase granularity it is ideal for data storage as well, eliminating the
need for additional data storage devices.
The erase block sizes of the AT25DN011 have been optimized to meet the needs of today's code and data storage applications.
By optimizing the size of the erase blocks, the memory space can be used much more efficiently. Because certain code modules
and data storage segments must reside by themselves in their own erase regions, the wasted and unused memory space that
occurs with large sectored and large block erase Flash memory devices can be greatly reduced. This increased memory space
efficiency allows additional code routines and data storage segments to be added while still maintaining the same overall device
density.
The device also contains a specialized OTP (One-Time Programmable) Security Register that can be used for purposes such as
unique device serialization, system-level Electronic Serial Number (ESN) storage, locked key storage, etc.
Specifically designed for use in many different systems, the AT25DN011 supports read, program, and erase operations with a
wide supply voltage range of 2.3V to 3.6V. No separate voltage is required for programming and erasing.
2. Pin Descriptions and Pinouts
Table 2-1. Pin Descriptions
Symbol
CS
SCK
Name and Function
CHIP SELECT: Asserting the CS pin selects the device. When the CS pin is deasserted, the
device will be deselected and normally be placed in standby mode (not Deep Power-Down
mode), and the SO pin will be in a high-impedance state. When the device is deselected,
data will not be accepted on the SI pin.
A high-to-low transition on the CS pin is required to start an operation, and a low-to-high
transition is required to end an operation. When ending an internally self-timed operation
such as a program or erase cycle, the device will not enter the standby mode until the
completion of the operation.
SERIAL CLOCK: This pin is used to provide a clock to the device and is used to control the
flow of data to and from the device. Command, address, and input data present on the SI pin
is always latched in on the rising edge of SCK, while output data on the SO pin is always
clocked out on the falling edge of SCK.
SERIAL INPUT: The SI pin is used to shift data into the device. The SI pin is used for all data
input including command and address sequences. Data on the SI pin is always latched in on
the rising edge of SCK.
Asserted
State
Low
-
Type
Input
Input
SI (I/O0)
With the Dual-Output Read commands, the SI Pin becomes an output pin (I/O0) in
conjunction with other pins to allow two bits of data on (I/O1-0) to be clocked out on every
falling edge of SCK
To maintain consistency with the SPI nomenclature, the SI (I/O0) pin will be referenced as
the SI pin unless specifically addressing the Dual-I/O modes in which case it will be
referenced as I/O0
Data present on the SI pin will be ignored whenever the device is deselected (CS is
deasserted).
-
Input/Output
AT25DN011
2
DS-25DN011–038B–5/2014